弗勒里吗啡试验的机制

F. Sánchez-Viesca, Reina Gómez
{"title":"弗勒里吗啡试验的机制","authors":"F. Sánchez-Viesca, Reina Gómez","doi":"10.34198/ejcs.11324.379384","DOIUrl":null,"url":null,"abstract":"The test under study is due to M. Fleury. He used morphine dissolved, at room temperature, in 1/20 N sulphuric acid; added some lead superoxide (lead dioxide), stirred for 8 min., let stand 4 min; the water-clear liquid was separated, and a drop of ammonia was added. A brown colour occurs immediately. These experimental data indicate not a fast reaction, but a rather complex mechanism. In this communication a reaction mechanism is provided for the first time. Protonated lead dioxide is the reactive species which on interaction with the phenol group in morphine forms a mixed ortho-plumbate. Protonation of this ester does not favor further reaction. However, reaction with a second reactive species is favourable for a push-pull seven-member reaction mechanism. Enolization of the dienone formed restores aromaticity. Protonation of the Pb=O double bond in the obtained intermediate promotes a 7-atom concerted mechanism. 2,3-Dioxomorphine is formed along with an oxide hydrate that yields water and two molecules of plumbous oxide.","PeriodicalId":507232,"journal":{"name":"Earthline Journal of Chemical Sciences","volume":" 98","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanism of Fleury test for morphine\",\"authors\":\"F. Sánchez-Viesca, Reina Gómez\",\"doi\":\"10.34198/ejcs.11324.379384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The test under study is due to M. Fleury. He used morphine dissolved, at room temperature, in 1/20 N sulphuric acid; added some lead superoxide (lead dioxide), stirred for 8 min., let stand 4 min; the water-clear liquid was separated, and a drop of ammonia was added. A brown colour occurs immediately. These experimental data indicate not a fast reaction, but a rather complex mechanism. In this communication a reaction mechanism is provided for the first time. Protonated lead dioxide is the reactive species which on interaction with the phenol group in morphine forms a mixed ortho-plumbate. Protonation of this ester does not favor further reaction. However, reaction with a second reactive species is favourable for a push-pull seven-member reaction mechanism. Enolization of the dienone formed restores aromaticity. Protonation of the Pb=O double bond in the obtained intermediate promotes a 7-atom concerted mechanism. 2,3-Dioxomorphine is formed along with an oxide hydrate that yields water and two molecules of plumbous oxide.\",\"PeriodicalId\":507232,\"journal\":{\"name\":\"Earthline Journal of Chemical Sciences\",\"volume\":\" 98\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthline Journal of Chemical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34198/ejcs.11324.379384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthline Journal of Chemical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34198/ejcs.11324.379384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正在研究的试验是由弗勒里先生(M. Fleury)完成的。他使用吗啡在室温下溶解在 1/20 N 的硫酸中;加入一些过氧化铅(二氧化铅),搅拌 8 分钟,静置 4 分钟;分离出水状透明液体,滴入一滴氨水。立即出现棕色。这些实验数据表明反应速度并不快,但反应机理相当复杂。本文首次提供了反应机理。质子化的二氧化铅是一种活性物质,它与吗啡中的苯酚基发生作用后会形成一种混合的正庚酸酯。这种酯的质子化不利于进一步反应。不过,与第二种反应物的反应有利于推拉式七元反应机制。形成的二烯酮烯醇化后恢复了芳香性。得到的中间体中 Pb=O 双键的质子化促进了七原子协同机制。2,3-二氧吗啡与氧化物水合物同时生成,产生水和两分子氧化铂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The mechanism of Fleury test for morphine
The test under study is due to M. Fleury. He used morphine dissolved, at room temperature, in 1/20 N sulphuric acid; added some lead superoxide (lead dioxide), stirred for 8 min., let stand 4 min; the water-clear liquid was separated, and a drop of ammonia was added. A brown colour occurs immediately. These experimental data indicate not a fast reaction, but a rather complex mechanism. In this communication a reaction mechanism is provided for the first time. Protonated lead dioxide is the reactive species which on interaction with the phenol group in morphine forms a mixed ortho-plumbate. Protonation of this ester does not favor further reaction. However, reaction with a second reactive species is favourable for a push-pull seven-member reaction mechanism. Enolization of the dienone formed restores aromaticity. Protonation of the Pb=O double bond in the obtained intermediate promotes a 7-atom concerted mechanism. 2,3-Dioxomorphine is formed along with an oxide hydrate that yields water and two molecules of plumbous oxide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of perturbations on dantrolene - A DFT treatise Effects and remediation of heavy metals contamination in soil and vegetables from different areas: A review A novel transamination reaction in a murexide-like sequence for caffeine detection The Fav-Jerry Distribution: Another Member in the Lindley Class with Applications The mechanism of Fleury test for morphine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1