增强磁共振成像中的脑肿瘤分类:利用深度卷积神经网络提高准确性

Shourove Sutradhar Dip, Md. Habibur Rahman, Nazrul Islam, Md. Easin Arafat, Pulak Kanti Bhowmick, Mohammad Abu Yousuf
{"title":"增强磁共振成像中的脑肿瘤分类:利用深度卷积神经网络提高准确性","authors":"Shourove Sutradhar Dip, Md. Habibur Rahman, Nazrul Islam, Md. Easin Arafat, Pulak Kanti Bhowmick, Mohammad Abu Yousuf","doi":"10.5815/ijitcs.2024.03.02","DOIUrl":null,"url":null,"abstract":"Brain tumors are among the deadliest forms of cancer, and there is a significant death rate in patients. Identifying and classifying brain tumors are critical steps in understanding their functioning. The best way to treat a brain tumor depends on its type, size, and location. In the modern era, Radiologists utilize Brain tumor locations that can be determined using magnetic resonance imaging (MRI). However, manual tests and MRI examinations are time-consuming and require skills. In addition, misdiagnosis of tumors can lead to inappropriate medical therapy, which could reduce their chances of living. As technology advances in Deep Learning (DL), Computer Assisted Diagnosis (CAD) as well as Machine Learning (ML) technique has been developed to aid in the detection of brain tumors, radiologists can now more accurately identify brain tumors. This paper proposes an MRI image classification using a VGG16 model to make a deep convolutional neural network (DCNN) architecture. The proposed model was evaluated with two sets of brain MRI data from Kaggle. Considering both datasets during the training at Google Colab, the proposed method achieved significant performance with a maximum overall accuracy of 96.67% and 97.67%, respectively. The proposed model was reported to have worked well during the training period and been highly accurate. The proposed model's performance criteria go beyond existing techniques.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Brain Tumor Classification in MRI: Leveraging Deep Convolutional Neural Networks for Improved Accuracy\",\"authors\":\"Shourove Sutradhar Dip, Md. Habibur Rahman, Nazrul Islam, Md. Easin Arafat, Pulak Kanti Bhowmick, Mohammad Abu Yousuf\",\"doi\":\"10.5815/ijitcs.2024.03.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain tumors are among the deadliest forms of cancer, and there is a significant death rate in patients. Identifying and classifying brain tumors are critical steps in understanding their functioning. The best way to treat a brain tumor depends on its type, size, and location. In the modern era, Radiologists utilize Brain tumor locations that can be determined using magnetic resonance imaging (MRI). However, manual tests and MRI examinations are time-consuming and require skills. In addition, misdiagnosis of tumors can lead to inappropriate medical therapy, which could reduce their chances of living. As technology advances in Deep Learning (DL), Computer Assisted Diagnosis (CAD) as well as Machine Learning (ML) technique has been developed to aid in the detection of brain tumors, radiologists can now more accurately identify brain tumors. This paper proposes an MRI image classification using a VGG16 model to make a deep convolutional neural network (DCNN) architecture. The proposed model was evaluated with two sets of brain MRI data from Kaggle. Considering both datasets during the training at Google Colab, the proposed method achieved significant performance with a maximum overall accuracy of 96.67% and 97.67%, respectively. The proposed model was reported to have worked well during the training period and been highly accurate. The proposed model's performance criteria go beyond existing techniques.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2024.03.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2024.03.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤是最致命的癌症之一,患者死亡率很高。识别和分类脑肿瘤是了解其功能的关键步骤。治疗脑瘤的最佳方法取决于其类型、大小和位置。在现代,放射科医生利用磁共振成像(MRI)来确定脑肿瘤的位置。然而,人工测试和核磁共振成像检查既耗时又需要技术。此外,对肿瘤的误诊会导致不恰当的医疗治疗,从而降低患者的生存机会。随着深度学习(DL)、计算机辅助诊断(CAD)以及机器学习(ML)技术的发展,放射科医生现在可以更准确地识别脑肿瘤。本文提出了一种使用 VGG16 模型进行磁共振成像分类的深度卷积神经网络(DCNN)架构。我们用 Kaggle 上的两组脑部 MRI 数据对所提出的模型进行了评估。在谷歌实验室训练期间,考虑到这两个数据集,所提出的方法取得了显著的性能,最高总体准确率分别为 96.67% 和 97.67%。据报告,所提出的模型在训练期间运行良好,准确率很高。拟议模型的性能标准超越了现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Brain Tumor Classification in MRI: Leveraging Deep Convolutional Neural Networks for Improved Accuracy
Brain tumors are among the deadliest forms of cancer, and there is a significant death rate in patients. Identifying and classifying brain tumors are critical steps in understanding their functioning. The best way to treat a brain tumor depends on its type, size, and location. In the modern era, Radiologists utilize Brain tumor locations that can be determined using magnetic resonance imaging (MRI). However, manual tests and MRI examinations are time-consuming and require skills. In addition, misdiagnosis of tumors can lead to inappropriate medical therapy, which could reduce their chances of living. As technology advances in Deep Learning (DL), Computer Assisted Diagnosis (CAD) as well as Machine Learning (ML) technique has been developed to aid in the detection of brain tumors, radiologists can now more accurately identify brain tumors. This paper proposes an MRI image classification using a VGG16 model to make a deep convolutional neural network (DCNN) architecture. The proposed model was evaluated with two sets of brain MRI data from Kaggle. Considering both datasets during the training at Google Colab, the proposed method achieved significant performance with a maximum overall accuracy of 96.67% and 97.67%, respectively. The proposed model was reported to have worked well during the training period and been highly accurate. The proposed model's performance criteria go beyond existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Healthcare Provision in Conflict Zones: Queuing System Models for Mobile and Flexible Medical Care Units with a Limited Number of Treatment Stations A Machine Learning Based Intelligent Diabetic and Hypertensive Patient Prediction Scheme and A Mobile Application for Patients Assistance Mimicking Nature: Analysis of Dragonfly Pursuit Strategies Using LSTM and Kalman Filter Securing the Internet of Things: Evaluating Machine Learning Algorithms for Detecting IoT Cyberattacks Using CIC-IoT2023 Dataset Analyzing Test Performance of BSIT Students and Question Quality: A Study on Item Difficulty Index and Item Discrimination Index for Test Question Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1