电力推进星座的轨道容限和内在轨道容量

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Spacecraft and Rockets Pub Date : 2024-06-08 DOI:10.2514/1.a35875
Giovanni Lavezzi, M. Lifson, Simone Servadio, Richard Linares
{"title":"电力推进星座的轨道容限和内在轨道容量","authors":"Giovanni Lavezzi, M. Lifson, Simone Servadio, Richard Linares","doi":"10.2514/1.a35875","DOIUrl":null,"url":null,"abstract":"Large constellations are typically designed using sets of periodic orbits and satellite control boxes sized to ensure compatible phasing between coorbital constellation planes to prevent conjunction events. This work investigates how the control action for orbit maintenance influences feasible intrashell and intershell distances in a satellite constellation. Two-dimensional lattice flower constellations are simulated in an environment inclusive of orbital perturbations, with onboard sensors and an electric propulsion system constituting the satellite guidance, navigation, and control system. An analysis to define estimates for minimum separation distances is performed as a function of control, propulsion, orbit, environmental, and spacecraft characteristics. An estimate of the intrinsic (geometric) orbital capacity is proposed, based on current and advanced technologies, in order to quantify the number of admissible spacecraft and orbital shells in a selected altitude range. Simulation results are used to improve the fidelity of intrinsic orbital capacity estimates and to understand factors that influence the number of admissible satellite locations in low Earth orbit.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital Tolerance and Intrinsic Orbital Capacity for Electric Propulsion Constellations\",\"authors\":\"Giovanni Lavezzi, M. Lifson, Simone Servadio, Richard Linares\",\"doi\":\"10.2514/1.a35875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large constellations are typically designed using sets of periodic orbits and satellite control boxes sized to ensure compatible phasing between coorbital constellation planes to prevent conjunction events. This work investigates how the control action for orbit maintenance influences feasible intrashell and intershell distances in a satellite constellation. Two-dimensional lattice flower constellations are simulated in an environment inclusive of orbital perturbations, with onboard sensors and an electric propulsion system constituting the satellite guidance, navigation, and control system. An analysis to define estimates for minimum separation distances is performed as a function of control, propulsion, orbit, environmental, and spacecraft characteristics. An estimate of the intrinsic (geometric) orbital capacity is proposed, based on current and advanced technologies, in order to quantify the number of admissible spacecraft and orbital shells in a selected altitude range. Simulation results are used to improve the fidelity of intrinsic orbital capacity estimates and to understand factors that influence the number of admissible satellite locations in low Earth orbit.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35875\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.a35875","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

大型星群的设计通常使用成套的周期轨道和卫星控制箱,其大小确保同轨道星群平面之间的相位兼容,以防止会合事件。这项工作研究了轨道维护控制行动如何影响卫星星座中可行的壳内和壳间距离。在包含轨道扰动的环境中模拟了二维格子花星座,卫星制导、导航和控制系统由星载传感器和电力推进系统构成。根据控制、推进、轨道、环境和航天器特性的函数进行分析,以确定最小分离距离的估计值。根据当前的先进技术,提出了对固有(几何)轨道容量的估算,以量化选定高度范围内可容纳的航天器和轨道弹的数量。模拟结果用于提高内在轨道容量估算的保真度,并了解影响低地球轨道可容纳卫星位置数量的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Orbital Tolerance and Intrinsic Orbital Capacity for Electric Propulsion Constellations
Large constellations are typically designed using sets of periodic orbits and satellite control boxes sized to ensure compatible phasing between coorbital constellation planes to prevent conjunction events. This work investigates how the control action for orbit maintenance influences feasible intrashell and intershell distances in a satellite constellation. Two-dimensional lattice flower constellations are simulated in an environment inclusive of orbital perturbations, with onboard sensors and an electric propulsion system constituting the satellite guidance, navigation, and control system. An analysis to define estimates for minimum separation distances is performed as a function of control, propulsion, orbit, environmental, and spacecraft characteristics. An estimate of the intrinsic (geometric) orbital capacity is proposed, based on current and advanced technologies, in order to quantify the number of admissible spacecraft and orbital shells in a selected altitude range. Simulation results are used to improve the fidelity of intrinsic orbital capacity estimates and to understand factors that influence the number of admissible satellite locations in low Earth orbit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
期刊最新文献
Dimensionality Reduction for Onboard Modeling of Uncertain Atmospheres Experimental Observations on Film Cooling Effectiveness on Aerodynamic Heating in Hypersonic Flow Dynamic Modeling and Experimental Analysis of Aerospace Equipment Attached Using Reclosable Fasteners Lunar Infrastructure via Multiscale Granular Stacking Orbital Tolerance and Intrinsic Orbital Capacity for Electric Propulsion Constellations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1