Ayrton I Bangolo, Nikita Wadhwani, V. Nagesh, Shraboni Dey, Hadrian Hoang-Vu Tran, Izage Kianifar Aguilar, Auda Auda, Aman Sidiqui, Aiswarya Menon, Deborah Daoud, James Liu, Sai Priyanka Pulipaka, Blessy George, Flor Furman, Nareeman Khan, Adewale Plumptre, Imranjot Sekhon, Abraham Lo, Simcha I Weissman
{"title":"人工智能对食管、胃和结直肠恶性肿瘤治疗的影响","authors":"Ayrton I Bangolo, Nikita Wadhwani, V. Nagesh, Shraboni Dey, Hadrian Hoang-Vu Tran, Izage Kianifar Aguilar, Auda Auda, Aman Sidiqui, Aiswarya Menon, Deborah Daoud, James Liu, Sai Priyanka Pulipaka, Blessy George, Flor Furman, Nareeman Khan, Adewale Plumptre, Imranjot Sekhon, Abraham Lo, Simcha I Weissman","doi":"10.37126/aige.v5.i2.90704","DOIUrl":null,"url":null,"abstract":"The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.","PeriodicalId":495606,"journal":{"name":"Artificial intelligence in gastrointestinal endoscopy","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of artificial intelligence in the management of esophageal, gastric and colorectal malignancies\",\"authors\":\"Ayrton I Bangolo, Nikita Wadhwani, V. Nagesh, Shraboni Dey, Hadrian Hoang-Vu Tran, Izage Kianifar Aguilar, Auda Auda, Aman Sidiqui, Aiswarya Menon, Deborah Daoud, James Liu, Sai Priyanka Pulipaka, Blessy George, Flor Furman, Nareeman Khan, Adewale Plumptre, Imranjot Sekhon, Abraham Lo, Simcha I Weissman\",\"doi\":\"10.37126/aige.v5.i2.90704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.\",\"PeriodicalId\":495606,\"journal\":{\"name\":\"Artificial intelligence in gastrointestinal endoscopy\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in gastrointestinal endoscopy\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.37126/aige.v5.i2.90704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in gastrointestinal endoscopy","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.37126/aige.v5.i2.90704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of artificial intelligence in the management of esophageal, gastric and colorectal malignancies
The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.