{"title":"纳米二氧化硅颗粒调节有机硅和烃类表面活性剂混合物泡沫特性的实验研究","authors":"Jiaqing Zhang, Fengju Shang, Xin Liu, Kaiyuan Li, Yunpeng Yang, Yanyan Zou","doi":"10.1007/s10694-024-01596-8","DOIUrl":null,"url":null,"abstract":"<div><p>Nano SiO<sub>2</sub> particles (NPs) combined with organosilane surfactants present a promising avenue for the development of stable fluorine-free firefighting foams. In this study, hydrophilic nano SiO<sub>2</sub> particles, non-ionic organosilane surfactant (SiCare2238), and amphoteric hydrocarbon surfactant (LAMC) were prepared as a mixed dispersion to investigate the interactions between nano particles and surfactants, foaming ability, and foam stability of the mixed dispersion. Results indicated that the surface activity, electrical conductivity, and foaming ability of the mixed dispersion decreased with increasing NPs concentration. The impact of NPs on foam stability depended on the filling and blocking mechanisms within the platform boundary of the formed liquid film. At NPs concentrations below 1.5%, strong electrostatic interactions among surfactant molecules resulted in the adsorption of surfactant molecules on the nano particle surface, preventing the formation of a network structure at the platform boundary, thereby reducing foam stability. At NPs concentrations above 1.5%, a significant number of NPs formed a network structure, filling and blocking the platform boundary, leading to delayed foam drainage, coarsening, and enhanced foam stability. This study provides theoretical guidance for the application of nano particles in fluorine-free.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 5","pages":"3553 - 3570"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on Foam Properties of Mixtures of Organic Silicon and Hydrocarbon Surfactants Regulated by Nano-SiO2 Particles\",\"authors\":\"Jiaqing Zhang, Fengju Shang, Xin Liu, Kaiyuan Li, Yunpeng Yang, Yanyan Zou\",\"doi\":\"10.1007/s10694-024-01596-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nano SiO<sub>2</sub> particles (NPs) combined with organosilane surfactants present a promising avenue for the development of stable fluorine-free firefighting foams. In this study, hydrophilic nano SiO<sub>2</sub> particles, non-ionic organosilane surfactant (SiCare2238), and amphoteric hydrocarbon surfactant (LAMC) were prepared as a mixed dispersion to investigate the interactions between nano particles and surfactants, foaming ability, and foam stability of the mixed dispersion. Results indicated that the surface activity, electrical conductivity, and foaming ability of the mixed dispersion decreased with increasing NPs concentration. The impact of NPs on foam stability depended on the filling and blocking mechanisms within the platform boundary of the formed liquid film. At NPs concentrations below 1.5%, strong electrostatic interactions among surfactant molecules resulted in the adsorption of surfactant molecules on the nano particle surface, preventing the formation of a network structure at the platform boundary, thereby reducing foam stability. At NPs concentrations above 1.5%, a significant number of NPs formed a network structure, filling and blocking the platform boundary, leading to delayed foam drainage, coarsening, and enhanced foam stability. This study provides theoretical guidance for the application of nano particles in fluorine-free.</p></div>\",\"PeriodicalId\":558,\"journal\":{\"name\":\"Fire Technology\",\"volume\":\"60 5\",\"pages\":\"3553 - 3570\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10694-024-01596-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01596-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental Study on Foam Properties of Mixtures of Organic Silicon and Hydrocarbon Surfactants Regulated by Nano-SiO2 Particles
Nano SiO2 particles (NPs) combined with organosilane surfactants present a promising avenue for the development of stable fluorine-free firefighting foams. In this study, hydrophilic nano SiO2 particles, non-ionic organosilane surfactant (SiCare2238), and amphoteric hydrocarbon surfactant (LAMC) were prepared as a mixed dispersion to investigate the interactions between nano particles and surfactants, foaming ability, and foam stability of the mixed dispersion. Results indicated that the surface activity, electrical conductivity, and foaming ability of the mixed dispersion decreased with increasing NPs concentration. The impact of NPs on foam stability depended on the filling and blocking mechanisms within the platform boundary of the formed liquid film. At NPs concentrations below 1.5%, strong electrostatic interactions among surfactant molecules resulted in the adsorption of surfactant molecules on the nano particle surface, preventing the formation of a network structure at the platform boundary, thereby reducing foam stability. At NPs concentrations above 1.5%, a significant number of NPs formed a network structure, filling and blocking the platform boundary, leading to delayed foam drainage, coarsening, and enhanced foam stability. This study provides theoretical guidance for the application of nano particles in fluorine-free.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.