通过 TCP Socket 编程在 Java GUI 应用程序中实现 Python 数据分析和可视化

Dr. Bala Dhandayuthapani V
{"title":"通过 TCP Socket 编程在 Java GUI 应用程序中实现 Python 数据分析和可视化","authors":"Dr. Bala Dhandayuthapani V","doi":"10.5815/ijitcs.2024.03.07","DOIUrl":null,"url":null,"abstract":"Python is popular in artificial intelligence (AI) and machine learning (ML) due to its versatility, adaptability, rich libraries, and active community. The existing Python interoperability in Java was investigated using socket programming on a non-graphical user interface (GUI). Python's data analysis library modules such as numpy, pandas, and scipy, together with visualization library modules such as Matplotlib and Seaborn, and Scikit-learn for machine-learning, aim to integrate into Java graphical user interface (GUI) applications such as Java applets, Java Swing, and Java FX. The substantial method used in the integration process is TCP socket programming, which makes instruction and data transfers to provide interoperability between Python and Java GUIs. This empirical research integrates Python data analysis and visualization graphs into Java applications and does not require any additional libraries or third-party libraries. The experimentation confirmed the advantages and challenges of this integration with a concrete solution. The intended audience for this research extends to software developers, data analysts, and scientists, recognizing Python's broad applicability to artificial intelligence (AI) and machine learning (ML). The integration of data analysis and visualization and machine-learning functionalities within the Java GUI. It emphasizes the self-sufficiency of the integration process and suggests future research directions, including comparative analysis with Java's native capabilities, interactive data visualization using libraries like Altair, Bokeh, Plotly, and Pygal, performance and security considerations, and no-code and low-code implementations.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":" 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Python Data Analysis and Visualization in Java GUI Applications Through TCP Socket Programming\",\"authors\":\"Dr. Bala Dhandayuthapani V\",\"doi\":\"10.5815/ijitcs.2024.03.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Python is popular in artificial intelligence (AI) and machine learning (ML) due to its versatility, adaptability, rich libraries, and active community. The existing Python interoperability in Java was investigated using socket programming on a non-graphical user interface (GUI). Python's data analysis library modules such as numpy, pandas, and scipy, together with visualization library modules such as Matplotlib and Seaborn, and Scikit-learn for machine-learning, aim to integrate into Java graphical user interface (GUI) applications such as Java applets, Java Swing, and Java FX. The substantial method used in the integration process is TCP socket programming, which makes instruction and data transfers to provide interoperability between Python and Java GUIs. This empirical research integrates Python data analysis and visualization graphs into Java applications and does not require any additional libraries or third-party libraries. The experimentation confirmed the advantages and challenges of this integration with a concrete solution. The intended audience for this research extends to software developers, data analysts, and scientists, recognizing Python's broad applicability to artificial intelligence (AI) and machine learning (ML). The integration of data analysis and visualization and machine-learning functionalities within the Java GUI. It emphasizes the self-sufficiency of the integration process and suggests future research directions, including comparative analysis with Java's native capabilities, interactive data visualization using libraries like Altair, Bokeh, Plotly, and Pygal, performance and security considerations, and no-code and low-code implementations.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\" 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2024.03.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2024.03.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Python 因其多功能性、适应性、丰富的库和活跃的社区而在人工智能(AI)和机器学习(ML)领域广受欢迎。通过在非图形用户界面(GUI)上使用套接字编程,对现有 Python 在 Java 中的互操作性进行了研究。Python 的数据分析库模块(如 numpy、pandas 和 scipy)以及可视化库模块(如 Matplotlib 和 Seaborn)和用于机器学习的 Scikit-learn 都旨在集成到 Java 图形用户界面(GUI)应用程序(如 Java applets、Java Swing 和 Java FX)中。集成过程中使用的主要方法是 TCP 套接字编程,它可以进行指令和数据传输,从而提供 Python 和 Java GUI 之间的互操作性。这项实证研究将 Python 数据分析和可视化图形集成到 Java 应用程序中,不需要任何额外的库或第三方库。实验以具体的解决方案证实了这种集成的优势和挑战。鉴于 Python 在人工智能(AI)和机器学习(ML)领域的广泛适用性,本研究的目标受众包括软件开发人员、数据分析师和科学家。在 Java GUI 中集成数据分析和可视化以及机器学习功能。它强调了集成过程的自足性,并提出了未来的研究方向,包括与 Java 本地功能的比较分析,使用 Altair、Bokeh、Plotly 和 Pygal 等库进行交互式数据可视化,性能和安全考虑因素,以及无代码和低代码实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Python Data Analysis and Visualization in Java GUI Applications Through TCP Socket Programming
Python is popular in artificial intelligence (AI) and machine learning (ML) due to its versatility, adaptability, rich libraries, and active community. The existing Python interoperability in Java was investigated using socket programming on a non-graphical user interface (GUI). Python's data analysis library modules such as numpy, pandas, and scipy, together with visualization library modules such as Matplotlib and Seaborn, and Scikit-learn for machine-learning, aim to integrate into Java graphical user interface (GUI) applications such as Java applets, Java Swing, and Java FX. The substantial method used in the integration process is TCP socket programming, which makes instruction and data transfers to provide interoperability between Python and Java GUIs. This empirical research integrates Python data analysis and visualization graphs into Java applications and does not require any additional libraries or third-party libraries. The experimentation confirmed the advantages and challenges of this integration with a concrete solution. The intended audience for this research extends to software developers, data analysts, and scientists, recognizing Python's broad applicability to artificial intelligence (AI) and machine learning (ML). The integration of data analysis and visualization and machine-learning functionalities within the Java GUI. It emphasizes the self-sufficiency of the integration process and suggests future research directions, including comparative analysis with Java's native capabilities, interactive data visualization using libraries like Altair, Bokeh, Plotly, and Pygal, performance and security considerations, and no-code and low-code implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Healthcare Provision in Conflict Zones: Queuing System Models for Mobile and Flexible Medical Care Units with a Limited Number of Treatment Stations A Machine Learning Based Intelligent Diabetic and Hypertensive Patient Prediction Scheme and A Mobile Application for Patients Assistance Mimicking Nature: Analysis of Dragonfly Pursuit Strategies Using LSTM and Kalman Filter Securing the Internet of Things: Evaluating Machine Learning Algorithms for Detecting IoT Cyberattacks Using CIC-IoT2023 Dataset Analyzing Test Performance of BSIT Students and Question Quality: A Study on Item Difficulty Index and Item Discrimination Index for Test Question Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1