利用人工蜂群-注意力门控递归单元模型预测企业财务风险

Anzhong Huang, Qiuxiang Bi, Mengen Chang, Xuan Feng, Anqi Zhang
{"title":"利用人工蜂群-注意力门控递归单元模型预测企业财务风险","authors":"Anzhong Huang, Qiuxiang Bi, Mengen Chang, Xuan Feng, Anqi Zhang","doi":"10.4018/joeuc.345244","DOIUrl":null,"url":null,"abstract":"Corporate financial risk prediction is a critical task for ensuring the stability and success of businesses in today's dynamic economic landscape. However, existing models often fall short in accurately assessing and managing these risks. They often rely on historical financial data alone, which fails to account for sudden market fluctuations or unforeseen external events, leading to suboptimal risk assessments. Recognizing the paramount importance of time series analysis in financial risk prediction, we introduce a novel approach to the ABC-Attention-GRU combination model. This innovative model leverages the strengths of Artificial Bee Colony (ABC), the attention mechanism, and Gated Recurrent Unit (GRU) to enhance predictive accuracy and robustness. In our experiments, the ABC-Attention-GRU model consistently outperformed state-of-the-art methods across various financial datasets. It effectively captured complex temporal dependencies, resulting in superior Precision, Recall, F1 Score, and AUC metrics.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"190 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Corporate Financial Risk Using Artificial Bee Colony-Attention-Gated Recurrent Unit Model\",\"authors\":\"Anzhong Huang, Qiuxiang Bi, Mengen Chang, Xuan Feng, Anqi Zhang\",\"doi\":\"10.4018/joeuc.345244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corporate financial risk prediction is a critical task for ensuring the stability and success of businesses in today's dynamic economic landscape. However, existing models often fall short in accurately assessing and managing these risks. They often rely on historical financial data alone, which fails to account for sudden market fluctuations or unforeseen external events, leading to suboptimal risk assessments. Recognizing the paramount importance of time series analysis in financial risk prediction, we introduce a novel approach to the ABC-Attention-GRU combination model. This innovative model leverages the strengths of Artificial Bee Colony (ABC), the attention mechanism, and Gated Recurrent Unit (GRU) to enhance predictive accuracy and robustness. In our experiments, the ABC-Attention-GRU model consistently outperformed state-of-the-art methods across various financial datasets. It effectively captured complex temporal dependencies, resulting in superior Precision, Recall, F1 Score, and AUC metrics.\",\"PeriodicalId\":504311,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"190 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.345244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.345244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今多变的经济环境中,企业财务风险预测是确保企业稳定和成功的关键任务。然而,现有模型往往无法准确评估和管理这些风险。这些模型通常仅依赖于历史财务数据,无法考虑突如其来的市场波动或不可预见的外部事件,从而导致风险评估不尽如人意。认识到时间序列分析在金融风险预测中的极端重要性,我们引入了 ABC-Attention-GRU 组合模型的新方法。这一创新模型充分利用了人工蜂群(ABC)、注意力机制和门控循环单元(GRU)的优势,提高了预测的准确性和稳健性。在我们的实验中,ABC-注意力-GRU 模型在各种金融数据集上的表现始终优于最先进的方法。它有效地捕捉了复杂的时间依赖性,从而获得了出色的精度、召回率、F1 分数和 AUC 指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Corporate Financial Risk Using Artificial Bee Colony-Attention-Gated Recurrent Unit Model
Corporate financial risk prediction is a critical task for ensuring the stability and success of businesses in today's dynamic economic landscape. However, existing models often fall short in accurately assessing and managing these risks. They often rely on historical financial data alone, which fails to account for sudden market fluctuations or unforeseen external events, leading to suboptimal risk assessments. Recognizing the paramount importance of time series analysis in financial risk prediction, we introduce a novel approach to the ABC-Attention-GRU combination model. This innovative model leverages the strengths of Artificial Bee Colony (ABC), the attention mechanism, and Gated Recurrent Unit (GRU) to enhance predictive accuracy and robustness. In our experiments, the ABC-Attention-GRU model consistently outperformed state-of-the-art methods across various financial datasets. It effectively captured complex temporal dependencies, resulting in superior Precision, Recall, F1 Score, and AUC metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Deep Learning-Based Animation Video Image Data Anomaly Detection and Recognition Algorithm Investigating the Moderating Effects of Context-Aware Recommendations on the Relationship Between Knowledge Search and Decision Quality Cracking the Code Predicting Corporate Financial Risk Using Artificial Bee Colony-Attention-Gated Recurrent Unit Model Time Series Trends Forecasting for Manufacturing Enterprises in the Digital Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1