基于数字图像相关结果的次全局平衡法识别弹性参数

IF 4.4 3区 工程技术 Q1 ENGINEERING, CIVIL Archives of Civil and Mechanical Engineering Pub Date : 2024-06-06 DOI:10.1007/s43452-024-00979-6
Marcin Nowak, Paweł Szeptyński, Sandra Musiał, Michał Maj
{"title":"基于数字图像相关结果的次全局平衡法识别弹性参数","authors":"Marcin Nowak,&nbsp;Paweł Szeptyński,&nbsp;Sandra Musiał,&nbsp;Michał Maj","doi":"10.1007/s43452-024-00979-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a new, simple method is presented, which enables identification of material properties of solids basing on the digital image correlation (DIC) measurements. It may be considered as a simplified alternative of low computational complexity for the well-known finite element model updating (FEMU) method and virtual fields method (VFM). The idea of the introduced sub-global equilibrium (SGE) method is to utilize the fundamental concept and definition of internal forces and its equilibrium with appropriate set of external forces. This makes the method universal for the use in the description of a great variety of continua. The objective function is the measure of imbalance, namely the sum of squares of residua of equilibrium equations of external forces and internal forces determined for finite-sized part of the sample. It is then minimized with the use of the Nelder–Mead downhill simplex algorithm. The efficiency of the proposed SGE method is shown for two types of materials: 310 S austenitic steel and carbon-fiber-reinforced polymer (CFRP). The proposed method was also verified based on FE analysis showing error estimation.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-024-00979-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Sub-global equilibrium method for identification of elastic parameters based on digital image correlation results\",\"authors\":\"Marcin Nowak,&nbsp;Paweł Szeptyński,&nbsp;Sandra Musiał,&nbsp;Michał Maj\",\"doi\":\"10.1007/s43452-024-00979-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, a new, simple method is presented, which enables identification of material properties of solids basing on the digital image correlation (DIC) measurements. It may be considered as a simplified alternative of low computational complexity for the well-known finite element model updating (FEMU) method and virtual fields method (VFM). The idea of the introduced sub-global equilibrium (SGE) method is to utilize the fundamental concept and definition of internal forces and its equilibrium with appropriate set of external forces. This makes the method universal for the use in the description of a great variety of continua. The objective function is the measure of imbalance, namely the sum of squares of residua of equilibrium equations of external forces and internal forces determined for finite-sized part of the sample. It is then minimized with the use of the Nelder–Mead downhill simplex algorithm. The efficiency of the proposed SGE method is shown for two types of materials: 310 S austenitic steel and carbon-fiber-reinforced polymer (CFRP). The proposed method was also verified based on FE analysis showing error estimation.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43452-024-00979-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-024-00979-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-00979-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种简单的新方法,可根据数字图像相关(DIC)测量结果确定固体的材料属性。该方法可被视为众所周知的有限元模型更新法(FEMU)和虚拟场法(VFM)的简化替代方法,计算复杂度较低。所引入的次全局平衡(SGE)方法的理念是利用内力的基本概念和定义及其与适当外力的平衡。这使得该方法在描述各种连续体时具有通用性。目标函数是不平衡度量,即对样本的有限大小部分确定的外力和内力平衡方程残差的平方和。然后利用 Nelder-Mead 下坡单纯形算法将其最小化。针对两种材料,展示了所提出的 SGE 方法的效率:310 S 奥氏体钢和碳纤维增强聚合物 (CFRP)。基于误差估算的 FE 分析也验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sub-global equilibrium method for identification of elastic parameters based on digital image correlation results

In this work, a new, simple method is presented, which enables identification of material properties of solids basing on the digital image correlation (DIC) measurements. It may be considered as a simplified alternative of low computational complexity for the well-known finite element model updating (FEMU) method and virtual fields method (VFM). The idea of the introduced sub-global equilibrium (SGE) method is to utilize the fundamental concept and definition of internal forces and its equilibrium with appropriate set of external forces. This makes the method universal for the use in the description of a great variety of continua. The objective function is the measure of imbalance, namely the sum of squares of residua of equilibrium equations of external forces and internal forces determined for finite-sized part of the sample. It is then minimized with the use of the Nelder–Mead downhill simplex algorithm. The efficiency of the proposed SGE method is shown for two types of materials: 310 S austenitic steel and carbon-fiber-reinforced polymer (CFRP). The proposed method was also verified based on FE analysis showing error estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Civil and Mechanical Engineering
Archives of Civil and Mechanical Engineering 工程技术-材料科学:综合
CiteScore
6.80
自引率
9.10%
发文量
201
审稿时长
4 months
期刊介绍: Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science. The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics. The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation. In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.
期刊最新文献
Evolution of microstructure, texture, and mechanical performance of Mg-13Gd-2Er-0.3Zr alloy by double extrusion at different temperatures Surface integrity and mechanical properties of small elements fabricated through LPBF and post-processed with heat treatment and abrasive machining Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete Estimating fundamental frequency of masonry arches under elevated temperature: numerical analysis and validation using ambient vibration tests Analytical assessment of dynamic stability in 2D unsaturated soil slopes reinforced with piles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1