Marcin Nowak, Paweł Szeptyński, Sandra Musiał, Michał Maj
{"title":"基于数字图像相关结果的次全局平衡法识别弹性参数","authors":"Marcin Nowak, Paweł Szeptyński, Sandra Musiał, Michał Maj","doi":"10.1007/s43452-024-00979-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a new, simple method is presented, which enables identification of material properties of solids basing on the digital image correlation (DIC) measurements. It may be considered as a simplified alternative of low computational complexity for the well-known finite element model updating (FEMU) method and virtual fields method (VFM). The idea of the introduced sub-global equilibrium (SGE) method is to utilize the fundamental concept and definition of internal forces and its equilibrium with appropriate set of external forces. This makes the method universal for the use in the description of a great variety of continua. The objective function is the measure of imbalance, namely the sum of squares of residua of equilibrium equations of external forces and internal forces determined for finite-sized part of the sample. It is then minimized with the use of the Nelder–Mead downhill simplex algorithm. The efficiency of the proposed SGE method is shown for two types of materials: 310 S austenitic steel and carbon-fiber-reinforced polymer (CFRP). The proposed method was also verified based on FE analysis showing error estimation.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-024-00979-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Sub-global equilibrium method for identification of elastic parameters based on digital image correlation results\",\"authors\":\"Marcin Nowak, Paweł Szeptyński, Sandra Musiał, Michał Maj\",\"doi\":\"10.1007/s43452-024-00979-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, a new, simple method is presented, which enables identification of material properties of solids basing on the digital image correlation (DIC) measurements. It may be considered as a simplified alternative of low computational complexity for the well-known finite element model updating (FEMU) method and virtual fields method (VFM). The idea of the introduced sub-global equilibrium (SGE) method is to utilize the fundamental concept and definition of internal forces and its equilibrium with appropriate set of external forces. This makes the method universal for the use in the description of a great variety of continua. The objective function is the measure of imbalance, namely the sum of squares of residua of equilibrium equations of external forces and internal forces determined for finite-sized part of the sample. It is then minimized with the use of the Nelder–Mead downhill simplex algorithm. The efficiency of the proposed SGE method is shown for two types of materials: 310 S austenitic steel and carbon-fiber-reinforced polymer (CFRP). The proposed method was also verified based on FE analysis showing error estimation.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43452-024-00979-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-024-00979-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-00979-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种简单的新方法,可根据数字图像相关(DIC)测量结果确定固体的材料属性。该方法可被视为众所周知的有限元模型更新法(FEMU)和虚拟场法(VFM)的简化替代方法,计算复杂度较低。所引入的次全局平衡(SGE)方法的理念是利用内力的基本概念和定义及其与适当外力的平衡。这使得该方法在描述各种连续体时具有通用性。目标函数是不平衡度量,即对样本的有限大小部分确定的外力和内力平衡方程残差的平方和。然后利用 Nelder-Mead 下坡单纯形算法将其最小化。针对两种材料,展示了所提出的 SGE 方法的效率:310 S 奥氏体钢和碳纤维增强聚合物 (CFRP)。基于误差估算的 FE 分析也验证了所提出的方法。
Sub-global equilibrium method for identification of elastic parameters based on digital image correlation results
In this work, a new, simple method is presented, which enables identification of material properties of solids basing on the digital image correlation (DIC) measurements. It may be considered as a simplified alternative of low computational complexity for the well-known finite element model updating (FEMU) method and virtual fields method (VFM). The idea of the introduced sub-global equilibrium (SGE) method is to utilize the fundamental concept and definition of internal forces and its equilibrium with appropriate set of external forces. This makes the method universal for the use in the description of a great variety of continua. The objective function is the measure of imbalance, namely the sum of squares of residua of equilibrium equations of external forces and internal forces determined for finite-sized part of the sample. It is then minimized with the use of the Nelder–Mead downhill simplex algorithm. The efficiency of the proposed SGE method is shown for two types of materials: 310 S austenitic steel and carbon-fiber-reinforced polymer (CFRP). The proposed method was also verified based on FE analysis showing error estimation.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.