三元 kagome Rb2Ni3S4 的电子和光学特性:密度泛函研究

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2024-06-06 DOI:10.1088/1361-651x/ad54e1
G. B. Acharya, Se-Hun Kim, Madhav Prasad Ghimire
{"title":"三元 kagome Rb2Ni3S4 的电子和光学特性:密度泛函研究","authors":"G. B. Acharya, Se-Hun Kim, Madhav Prasad Ghimire","doi":"10.1088/1361-651x/ad54e1","DOIUrl":null,"url":null,"abstract":"\n The application of semiconductors with optical properties has grown significantly in the development of semiconductor photovoltaics. Here, we explore the electronic and optical properties of ternary transition metal sulfide Rb2Ni3S4 by means of density functional theory. From the structural perspective, Ni atoms is found to form a kagome-like lattice in a two-dimensional plane of Rb2Ni3S4. From our calculations, Rb2Ni3S4 is found to be a semiconductor with an indirect band gap of ∼0.67 eV. Strong hybridization was observed between the S-3p with the Ni-3dxz and Ni-3dyz orbitals. Interestingly, a flat band was noticed below the Fermi level demonstrating one significant feature of kagome lattice. From the optical calculations, Rb2Ni3S4 is found to exhibit optical activity in both the visible and lower ultraviolet regions of the incident photon energies. The optical response suggests this material may be a potential candidate for opto-electronic device, given its ability to interact with light across a broad range of wavelengths. This work is expected to motivate the experimental group for transport measurements and may provide a new foundation in optics.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic and optical properties of ternary kagome Rb2Ni3S4: A density functional study\",\"authors\":\"G. B. Acharya, Se-Hun Kim, Madhav Prasad Ghimire\",\"doi\":\"10.1088/1361-651x/ad54e1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The application of semiconductors with optical properties has grown significantly in the development of semiconductor photovoltaics. Here, we explore the electronic and optical properties of ternary transition metal sulfide Rb2Ni3S4 by means of density functional theory. From the structural perspective, Ni atoms is found to form a kagome-like lattice in a two-dimensional plane of Rb2Ni3S4. From our calculations, Rb2Ni3S4 is found to be a semiconductor with an indirect band gap of ∼0.67 eV. Strong hybridization was observed between the S-3p with the Ni-3dxz and Ni-3dyz orbitals. Interestingly, a flat band was noticed below the Fermi level demonstrating one significant feature of kagome lattice. From the optical calculations, Rb2Ni3S4 is found to exhibit optical activity in both the visible and lower ultraviolet regions of the incident photon energies. The optical response suggests this material may be a potential candidate for opto-electronic device, given its ability to interact with light across a broad range of wavelengths. This work is expected to motivate the experimental group for transport measurements and may provide a new foundation in optics.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad54e1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad54e1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在半导体光电技术的发展过程中,具有光学特性的半导体的应用有了显著增长。在此,我们通过密度泛函理论探讨了三元过渡金属硫化物 Rb2Ni3S4 的电子和光学性质。从结构上看,镍原子在 Rb2Ni3S4 的二维平面上形成了卡戈米状晶格。通过计算,我们发现 Rb2Ni3S4 是一种间接带隙为 ∼0.67 eV 的半导体。在 S-3p 与 Ni-3dxz 和 Ni-3dyz 轨道之间观察到了强烈的杂化现象。有趣的是,在费米级以下发现了一个平带,这显示了卡戈米晶格的一个显著特点。通过光学计算发现,Rb2Ni3S4 在入射光子能量的可见光和低紫外区都表现出光学活性。这种光学响应表明,这种材料具有在广泛波长范围内与光相互作用的能力,因此有可能成为光电子器件的候选材料。这项工作有望激励实验小组进行传输测量,并为光学奠定新的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electronic and optical properties of ternary kagome Rb2Ni3S4: A density functional study
The application of semiconductors with optical properties has grown significantly in the development of semiconductor photovoltaics. Here, we explore the electronic and optical properties of ternary transition metal sulfide Rb2Ni3S4 by means of density functional theory. From the structural perspective, Ni atoms is found to form a kagome-like lattice in a two-dimensional plane of Rb2Ni3S4. From our calculations, Rb2Ni3S4 is found to be a semiconductor with an indirect band gap of ∼0.67 eV. Strong hybridization was observed between the S-3p with the Ni-3dxz and Ni-3dyz orbitals. Interestingly, a flat band was noticed below the Fermi level demonstrating one significant feature of kagome lattice. From the optical calculations, Rb2Ni3S4 is found to exhibit optical activity in both the visible and lower ultraviolet regions of the incident photon energies. The optical response suggests this material may be a potential candidate for opto-electronic device, given its ability to interact with light across a broad range of wavelengths. This work is expected to motivate the experimental group for transport measurements and may provide a new foundation in optics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1