数字化时代制造企业的时间序列趋势预测

Chaolin Yang, Jingdong Yan, Guangming Wang
{"title":"数字化时代制造企业的时间序列趋势预测","authors":"Chaolin Yang, Jingdong Yan, Guangming Wang","doi":"10.4018/joeuc.345242","DOIUrl":null,"url":null,"abstract":"In the digital age, manufacturing enterprises face challenges like information overload and data fragmentation. To address these issues, this paper proposes a novel method that integrates the Improved Whale Optimization Algorithm (IWOA), Bidirectional Long Short-Term Memory (BILSTM), and Temporal Pattern Attention (TPA) for analyzing time series data. IWOA optimizes hyperparameters, BILSTM captures temporal dependencies, and TPA enhances interpretability. Experimental results show the method's effectiveness in market trend prediction, production planning, and supply chain management. It enables accurate forecasts in a competitive environment, enhancing flexibility and foresight. This research overcomes existing limitations, offering a valuable analytical tool for understanding the digital economy's impact on manufacturing enterprises. It provides guidance for the industry's development in the digital era.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"16 s23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series Trends Forecasting for Manufacturing Enterprises in the Digital Age\",\"authors\":\"Chaolin Yang, Jingdong Yan, Guangming Wang\",\"doi\":\"10.4018/joeuc.345242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the digital age, manufacturing enterprises face challenges like information overload and data fragmentation. To address these issues, this paper proposes a novel method that integrates the Improved Whale Optimization Algorithm (IWOA), Bidirectional Long Short-Term Memory (BILSTM), and Temporal Pattern Attention (TPA) for analyzing time series data. IWOA optimizes hyperparameters, BILSTM captures temporal dependencies, and TPA enhances interpretability. Experimental results show the method's effectiveness in market trend prediction, production planning, and supply chain management. It enables accurate forecasts in a competitive environment, enhancing flexibility and foresight. This research overcomes existing limitations, offering a valuable analytical tool for understanding the digital economy's impact on manufacturing enterprises. It provides guidance for the industry's development in the digital era.\",\"PeriodicalId\":504311,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"16 s23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.345242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.345242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数字化时代,制造企业面临着信息过载和数据碎片化等挑战。为解决这些问题,本文提出了一种整合了改进鲸优化算法(IWOA)、双向长短时记忆(BILSTM)和时态模式注意(TPA)的新方法,用于分析时间序列数据。IWOA 优化超参数,BILSTM 捕捉时间依赖性,TPA 增强可解释性。实验结果表明,该方法在市场趋势预测、生产计划和供应链管理方面非常有效。它能在竞争激烈的环境中进行准确预测,提高灵活性和前瞻性。这项研究克服了现有的局限性,为了解数字经济对制造企业的影响提供了宝贵的分析工具。它为制造业在数字时代的发展提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time Series Trends Forecasting for Manufacturing Enterprises in the Digital Age
In the digital age, manufacturing enterprises face challenges like information overload and data fragmentation. To address these issues, this paper proposes a novel method that integrates the Improved Whale Optimization Algorithm (IWOA), Bidirectional Long Short-Term Memory (BILSTM), and Temporal Pattern Attention (TPA) for analyzing time series data. IWOA optimizes hyperparameters, BILSTM captures temporal dependencies, and TPA enhances interpretability. Experimental results show the method's effectiveness in market trend prediction, production planning, and supply chain management. It enables accurate forecasts in a competitive environment, enhancing flexibility and foresight. This research overcomes existing limitations, offering a valuable analytical tool for understanding the digital economy's impact on manufacturing enterprises. It provides guidance for the industry's development in the digital era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Deep Learning-Based Animation Video Image Data Anomaly Detection and Recognition Algorithm Investigating the Moderating Effects of Context-Aware Recommendations on the Relationship Between Knowledge Search and Decision Quality Cracking the Code Predicting Corporate Financial Risk Using Artificial Bee Colony-Attention-Gated Recurrent Unit Model Time Series Trends Forecasting for Manufacturing Enterprises in the Digital Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1