Yitian Ma, Linqing Chang, Dawei Yi, Meng Liu, Peichun Wang, Shuliang Luo, Zhiyun Zhang, Yan Yuan, Hai Lu
{"title":"通过对锂硫电池隔膜进行功能化双层改性,实现多硫化物的嵌段和催化协同效应","authors":"Yitian Ma, Linqing Chang, Dawei Yi, Meng Liu, Peichun Wang, Shuliang Luo, Zhiyun Zhang, Yan Yuan, Hai Lu","doi":"10.20517/energymater.2023.109","DOIUrl":null,"url":null,"abstract":"One crucial problem hindering the commercial application of lithium-sulfur batteries with high theoretical specific energy is the ceaseless shuttle of soluble lithium polysulfides (LiPSs) between cathodes and anodes, which usually leads to rapid capacity fade and serious self-discharge issues. Herein, a unique bilayer coating strategy designed to modify the polypropylene separator was developed in this study, which consisted of a bottom zeolite (SSZ-13) layer serving as a LiPS movement barrier and a top ZnS layer used for accelerating redox processes of LiPSs. Benefiting from the synergetic effect, the bilayer-modified separator offers absolute block capability to LiPS diffusion, moreover, significant catalysis effect on sulfur species conversion, as well as outstanding lithium-ion (Li+) conductivity, excellent electrolyte wettability, and desirable mechanical properties. Consequently, the assembled lithium-sulfur cell with the SSZ-13/ZnS@polypropylene separator demonstrates excellent cycle stability and rate capability, showcasing a capacity decay rate of only 0.052% per cycle at 1 C over 500 cycles.","PeriodicalId":516209,"journal":{"name":"Energy Materials","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergetic effect of block and catalysis on polysulfides by functionalized bilayer modification on the separator for lithium-sulfur batteries\",\"authors\":\"Yitian Ma, Linqing Chang, Dawei Yi, Meng Liu, Peichun Wang, Shuliang Luo, Zhiyun Zhang, Yan Yuan, Hai Lu\",\"doi\":\"10.20517/energymater.2023.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One crucial problem hindering the commercial application of lithium-sulfur batteries with high theoretical specific energy is the ceaseless shuttle of soluble lithium polysulfides (LiPSs) between cathodes and anodes, which usually leads to rapid capacity fade and serious self-discharge issues. Herein, a unique bilayer coating strategy designed to modify the polypropylene separator was developed in this study, which consisted of a bottom zeolite (SSZ-13) layer serving as a LiPS movement barrier and a top ZnS layer used for accelerating redox processes of LiPSs. Benefiting from the synergetic effect, the bilayer-modified separator offers absolute block capability to LiPS diffusion, moreover, significant catalysis effect on sulfur species conversion, as well as outstanding lithium-ion (Li+) conductivity, excellent electrolyte wettability, and desirable mechanical properties. Consequently, the assembled lithium-sulfur cell with the SSZ-13/ZnS@polypropylene separator demonstrates excellent cycle stability and rate capability, showcasing a capacity decay rate of only 0.052% per cycle at 1 C over 500 cycles.\",\"PeriodicalId\":516209,\"journal\":{\"name\":\"Energy Materials\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2023.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synergetic effect of block and catalysis on polysulfides by functionalized bilayer modification on the separator for lithium-sulfur batteries
One crucial problem hindering the commercial application of lithium-sulfur batteries with high theoretical specific energy is the ceaseless shuttle of soluble lithium polysulfides (LiPSs) between cathodes and anodes, which usually leads to rapid capacity fade and serious self-discharge issues. Herein, a unique bilayer coating strategy designed to modify the polypropylene separator was developed in this study, which consisted of a bottom zeolite (SSZ-13) layer serving as a LiPS movement barrier and a top ZnS layer used for accelerating redox processes of LiPSs. Benefiting from the synergetic effect, the bilayer-modified separator offers absolute block capability to LiPS diffusion, moreover, significant catalysis effect on sulfur species conversion, as well as outstanding lithium-ion (Li+) conductivity, excellent electrolyte wettability, and desirable mechanical properties. Consequently, the assembled lithium-sulfur cell with the SSZ-13/ZnS@polypropylene separator demonstrates excellent cycle stability and rate capability, showcasing a capacity decay rate of only 0.052% per cycle at 1 C over 500 cycles.