病原体检测的进展:将 SERS 和 LSPR 技术整合到手持式临床诊断中

Sebastian Huelck
{"title":"病原体检测的进展:将 SERS 和 LSPR 技术整合到手持式临床诊断中","authors":"Sebastian Huelck","doi":"10.1117/12.3022222","DOIUrl":null,"url":null,"abstract":"Amid the SARS-CoV-2 pandemic, traditional virus detection methods like RT-qPCR face limitations in terms of infrastructure and processing time. This has spurred the development of agile diagnostic technologies, emphasizing non-invasive and rapid testing. Surface-Enhanced Raman Scattering (SERS) and Localized Surface Plasmon Resonance (LSPR) have emerged as promising alternatives. SERS, amplifying Raman signals through metal nanostructures, offers high sensitivity, high specificity, rapid response, qualitative and quantitative analysis enhanced by recent innovations like multiwell-array substrates. Integration with machine learning refines SERS's diagnostic capabilities, enabling rapid and accurate identification of SARS-CoV-2. LSPR, leveraging light-metal nanoparticle interactions, revolutionizes rapid viral detection, especially with the development of portable handheld devices. These devices enable real-time, on-site testing, proving crucial in managing infectious disease outbreaks. Their applications extend beyond SARS-CoV-2, holding potential for various pathogens.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"22 13","pages":"130590E - 130590E-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in pathogen detection: the integration of SERS and LSPR technologies in handheld clinical diagnostics\",\"authors\":\"Sebastian Huelck\",\"doi\":\"10.1117/12.3022222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amid the SARS-CoV-2 pandemic, traditional virus detection methods like RT-qPCR face limitations in terms of infrastructure and processing time. This has spurred the development of agile diagnostic technologies, emphasizing non-invasive and rapid testing. Surface-Enhanced Raman Scattering (SERS) and Localized Surface Plasmon Resonance (LSPR) have emerged as promising alternatives. SERS, amplifying Raman signals through metal nanostructures, offers high sensitivity, high specificity, rapid response, qualitative and quantitative analysis enhanced by recent innovations like multiwell-array substrates. Integration with machine learning refines SERS's diagnostic capabilities, enabling rapid and accurate identification of SARS-CoV-2. LSPR, leveraging light-metal nanoparticle interactions, revolutionizes rapid viral detection, especially with the development of portable handheld devices. These devices enable real-time, on-site testing, proving crucial in managing infectious disease outbreaks. Their applications extend beyond SARS-CoV-2, holding potential for various pathogens.\",\"PeriodicalId\":178341,\"journal\":{\"name\":\"Defense + Commercial Sensing\",\"volume\":\"22 13\",\"pages\":\"130590E - 130590E-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defense + Commercial Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3022222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3022222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 SARS-CoV-2 大流行期间,RT-qPCR 等传统病毒检测方法面临着基础设施和处理时间方面的限制。这促使人们开发强调无创和快速检测的敏捷诊断技术。表面增强拉曼散射(SERS)和局部表面等离子体共振(LSPR)已成为前景广阔的替代方法。SERS 通过金属纳米结构放大拉曼信号,具有高灵敏度、高特异性、快速反应、定性和定量分析等特点,并通过多孔阵列基底等最新创新技术得到加强。与机器学习的结合完善了 SERS 的诊断能力,使其能够快速准确地识别 SARS-CoV-2 病毒。LSPR 利用光-金属纳米粒子的相互作用,彻底改变了病毒的快速检测,特别是随着便携式手持设备的发展。这些设备可以进行实时现场检测,对管理传染病爆发至关重要。它们的应用范围超出了 SARS-CoV-2 病毒,对各种病原体都有潜在的检测价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancements in pathogen detection: the integration of SERS and LSPR technologies in handheld clinical diagnostics
Amid the SARS-CoV-2 pandemic, traditional virus detection methods like RT-qPCR face limitations in terms of infrastructure and processing time. This has spurred the development of agile diagnostic technologies, emphasizing non-invasive and rapid testing. Surface-Enhanced Raman Scattering (SERS) and Localized Surface Plasmon Resonance (LSPR) have emerged as promising alternatives. SERS, amplifying Raman signals through metal nanostructures, offers high sensitivity, high specificity, rapid response, qualitative and quantitative analysis enhanced by recent innovations like multiwell-array substrates. Integration with machine learning refines SERS's diagnostic capabilities, enabling rapid and accurate identification of SARS-CoV-2. LSPR, leveraging light-metal nanoparticle interactions, revolutionizes rapid viral detection, especially with the development of portable handheld devices. These devices enable real-time, on-site testing, proving crucial in managing infectious disease outbreaks. Their applications extend beyond SARS-CoV-2, holding potential for various pathogens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced robot state estimation using physics-informed neural networks and multimodal proprioceptive data Exploring MOF-based micromotors as SERS sensors Adaptive object detection algorithms for resource constrained autonomous robotic systems Adaptive SIF-EKF estimation for fault detection in attitude control experiments A homogeneous low-resolution face recognition method using correlation features at the edge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1