Yajie Bao, Dan Shen, Genshe Chen, K. Pham, Erik Blasch
{"title":"多架无人机系统的弹性感知人在环 PNT 需求建模","authors":"Yajie Bao, Dan Shen, Genshe Chen, K. Pham, Erik Blasch","doi":"10.1117/12.3023840","DOIUrl":null,"url":null,"abstract":"The mobility and versatility of Unmanned Aerial Systems (UASs) make them valuable platforms in Distributed Cooperative Beamforming (DCB) applications, where high-precision time synchronization and Positioning, Navigation, and Timing (PNT) are required. UAS with PNT can quickly respond to changing situations and provide temporary coverage in remote or disaster-affected areas. While the onboard PNT equipment allows UASs to obtain reliable PNT solutions, human presence with supervisory roles (aka human-on-the-loop (HotL)) is almost inevitable in such equipment with automation and multi-level resilience of prevention, response, and recovery functions. This paper employs a meta-model to describe interactions among the human operators and multiple UAS platforms for resilience aware HotL PNT in the DCB scenario. The roles of UASs and humans in the decision-making process of resilient PNT are clarified. Interaction points where humans should collaborate with UASs are identified to augment the autonomy of the UASs. Moreover, requirements are specified for the interaction points. Simulations of a HotL multi-UAS positioning system demonstrate that the requirements modeling facilitates the design of human-machine teaming, and the human presence enhances the resilience of the positioning system.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"33 5","pages":"130620E - 130620E-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Requirements modeling of resilience-aware human-on-the-loop PNT of multiple UASs\",\"authors\":\"Yajie Bao, Dan Shen, Genshe Chen, K. Pham, Erik Blasch\",\"doi\":\"10.1117/12.3023840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mobility and versatility of Unmanned Aerial Systems (UASs) make them valuable platforms in Distributed Cooperative Beamforming (DCB) applications, where high-precision time synchronization and Positioning, Navigation, and Timing (PNT) are required. UAS with PNT can quickly respond to changing situations and provide temporary coverage in remote or disaster-affected areas. While the onboard PNT equipment allows UASs to obtain reliable PNT solutions, human presence with supervisory roles (aka human-on-the-loop (HotL)) is almost inevitable in such equipment with automation and multi-level resilience of prevention, response, and recovery functions. This paper employs a meta-model to describe interactions among the human operators and multiple UAS platforms for resilience aware HotL PNT in the DCB scenario. The roles of UASs and humans in the decision-making process of resilient PNT are clarified. Interaction points where humans should collaborate with UASs are identified to augment the autonomy of the UASs. Moreover, requirements are specified for the interaction points. Simulations of a HotL multi-UAS positioning system demonstrate that the requirements modeling facilitates the design of human-machine teaming, and the human presence enhances the resilience of the positioning system.\",\"PeriodicalId\":178341,\"journal\":{\"name\":\"Defense + Commercial Sensing\",\"volume\":\"33 5\",\"pages\":\"130620E - 130620E-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defense + Commercial Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3023840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3023840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Requirements modeling of resilience-aware human-on-the-loop PNT of multiple UASs
The mobility and versatility of Unmanned Aerial Systems (UASs) make them valuable platforms in Distributed Cooperative Beamforming (DCB) applications, where high-precision time synchronization and Positioning, Navigation, and Timing (PNT) are required. UAS with PNT can quickly respond to changing situations and provide temporary coverage in remote or disaster-affected areas. While the onboard PNT equipment allows UASs to obtain reliable PNT solutions, human presence with supervisory roles (aka human-on-the-loop (HotL)) is almost inevitable in such equipment with automation and multi-level resilience of prevention, response, and recovery functions. This paper employs a meta-model to describe interactions among the human operators and multiple UAS platforms for resilience aware HotL PNT in the DCB scenario. The roles of UASs and humans in the decision-making process of resilient PNT are clarified. Interaction points where humans should collaborate with UASs are identified to augment the autonomy of the UASs. Moreover, requirements are specified for the interaction points. Simulations of a HotL multi-UAS positioning system demonstrate that the requirements modeling facilitates the design of human-machine teaming, and the human presence enhances the resilience of the positioning system.