Ghada AlNemer, Mohamed Hosny, R. Udhayakumar, Ahmed M. Elshenhab
{"title":"罗森布拉特过程控制的分数随机延迟系统的良好假设性和海尔-乌兰稳定性","authors":"Ghada AlNemer, Mohamed Hosny, R. Udhayakumar, Ahmed M. Elshenhab","doi":"10.3390/fractalfract8060342","DOIUrl":null,"url":null,"abstract":"Under the effect of the Rosenblatt process, the well-posedness and Hyers–Ulam stability of nonlinear fractional stochastic delay systems are considered. First, depending on fixed-point theory, the existence and uniqueness of solutions are proven. Next, utilizing the delayed Mittag–Leffler matrix functions and Grönwall’s inequality, sufficient criteria for Hyers–Ulam stability are established. Ultimately, an example is presented to demonstrate the effectiveness of the obtained findings.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Posedness and Hyers–Ulam Stability of Fractional Stochastic Delay Systems Governed by the Rosenblatt Process\",\"authors\":\"Ghada AlNemer, Mohamed Hosny, R. Udhayakumar, Ahmed M. Elshenhab\",\"doi\":\"10.3390/fractalfract8060342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the effect of the Rosenblatt process, the well-posedness and Hyers–Ulam stability of nonlinear fractional stochastic delay systems are considered. First, depending on fixed-point theory, the existence and uniqueness of solutions are proven. Next, utilizing the delayed Mittag–Leffler matrix functions and Grönwall’s inequality, sufficient criteria for Hyers–Ulam stability are established. Ultimately, an example is presented to demonstrate the effectiveness of the obtained findings.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8060342\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8060342","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Well-Posedness and Hyers–Ulam Stability of Fractional Stochastic Delay Systems Governed by the Rosenblatt Process
Under the effect of the Rosenblatt process, the well-posedness and Hyers–Ulam stability of nonlinear fractional stochastic delay systems are considered. First, depending on fixed-point theory, the existence and uniqueness of solutions are proven. Next, utilizing the delayed Mittag–Leffler matrix functions and Grönwall’s inequality, sufficient criteria for Hyers–Ulam stability are established. Ultimately, an example is presented to demonstrate the effectiveness of the obtained findings.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.