控制与认知的融合:英国人工智能机器人学文献概览

Khaled Obaideen, Mohammad A. AlShabi, M. Bettayeb, S. A. Gadsden, Talal Bonny
{"title":"控制与认知的融合:英国人工智能机器人学文献概览","authors":"Khaled Obaideen, Mohammad A. AlShabi, M. Bettayeb, S. A. Gadsden, Talal Bonny","doi":"10.1117/12.3013841","DOIUrl":null,"url":null,"abstract":"This paper gives a bibliometric summary of Unscented Kalman Filter (UKF) in AI-infused robotics, highlighting its role in unifying control and cognition. Using a systematic approach that includes literature collection from IEEE Xplore, Web of Science and Google Scholar, rigorous screening and selection, and VOSviewer for a comprehensive bibliometric analysis. This analysis reports major trends, primary contributors and central themes, highlighting UKF’s pivotal role in improving robotics cognitive and control capacities. The study emphasizes the universally used UKF in many fields of robotics, i.e. in navigation and mapping, sensor fusion, and state estimation, as one of its principal developers, which illustrates its vital role in promoting robotic autonomy and intelligence. The integration of findings from the bibliometric analysis thus not only presents the current state of research but also identifies possible future research directions, highlighting the increasing unification of control theories and cognitive processes in robotics. This research adds to the body of knowledge by delivering a comprehensive map of the UKF application. In this light, the UKF will be able to penetrate AI-infused robotics, the future of robotic developments will rely on the deep fusion of control and cognition facilitated by UKF and alike.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"324 3","pages":"1305817 - 1305817-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The convergence of control and cognition: a bibliometric overview of UKF in AI-infused robotics\",\"authors\":\"Khaled Obaideen, Mohammad A. AlShabi, M. Bettayeb, S. A. Gadsden, Talal Bonny\",\"doi\":\"10.1117/12.3013841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives a bibliometric summary of Unscented Kalman Filter (UKF) in AI-infused robotics, highlighting its role in unifying control and cognition. Using a systematic approach that includes literature collection from IEEE Xplore, Web of Science and Google Scholar, rigorous screening and selection, and VOSviewer for a comprehensive bibliometric analysis. This analysis reports major trends, primary contributors and central themes, highlighting UKF’s pivotal role in improving robotics cognitive and control capacities. The study emphasizes the universally used UKF in many fields of robotics, i.e. in navigation and mapping, sensor fusion, and state estimation, as one of its principal developers, which illustrates its vital role in promoting robotic autonomy and intelligence. The integration of findings from the bibliometric analysis thus not only presents the current state of research but also identifies possible future research directions, highlighting the increasing unification of control theories and cognitive processes in robotics. This research adds to the body of knowledge by delivering a comprehensive map of the UKF application. In this light, the UKF will be able to penetrate AI-infused robotics, the future of robotic developments will rely on the deep fusion of control and cognition facilitated by UKF and alike.\",\"PeriodicalId\":178341,\"journal\":{\"name\":\"Defense + Commercial Sensing\",\"volume\":\"324 3\",\"pages\":\"1305817 - 1305817-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defense + Commercial Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3013841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3013841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对人工智能注入机器人技术中的无cented Kalman Filter(UKF)进行了文献计量学总结,强调了其在统一控制与认知方面的作用。本文采用系统方法,包括从 IEEE Xplore、Web of Science 和 Google Scholar 收集文献,进行严格筛选,并使用 VOSviewer 进行全面的文献计量分析。该分析报告了主要趋势、主要贡献者和中心主题,突出了 UKF 在提高机器人认知和控制能力方面的关键作用。研究强调,UKF 作为其主要开发者之一,在导航和绘图、传感器融合以及状态估计等多个机器人领域得到了普遍应用,这说明了它在促进机器人自主性和智能化方面的重要作用。因此,文献计量学分析结果的整合不仅展示了当前的研究状况,还确定了未来可能的研究方向,突出了机器人学中控制理论和认知过程的日益统一。这项研究提供了英国框架应用的综合地图,为知识体系增添了新的内容。有鉴于此,UKF 将能够渗透到人工智能注入的机器人技术中,未来的机器人发展将依赖于 UKF 和类似技术所促进的控制与认知的深度融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The convergence of control and cognition: a bibliometric overview of UKF in AI-infused robotics
This paper gives a bibliometric summary of Unscented Kalman Filter (UKF) in AI-infused robotics, highlighting its role in unifying control and cognition. Using a systematic approach that includes literature collection from IEEE Xplore, Web of Science and Google Scholar, rigorous screening and selection, and VOSviewer for a comprehensive bibliometric analysis. This analysis reports major trends, primary contributors and central themes, highlighting UKF’s pivotal role in improving robotics cognitive and control capacities. The study emphasizes the universally used UKF in many fields of robotics, i.e. in navigation and mapping, sensor fusion, and state estimation, as one of its principal developers, which illustrates its vital role in promoting robotic autonomy and intelligence. The integration of findings from the bibliometric analysis thus not only presents the current state of research but also identifies possible future research directions, highlighting the increasing unification of control theories and cognitive processes in robotics. This research adds to the body of knowledge by delivering a comprehensive map of the UKF application. In this light, the UKF will be able to penetrate AI-infused robotics, the future of robotic developments will rely on the deep fusion of control and cognition facilitated by UKF and alike.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced robot state estimation using physics-informed neural networks and multimodal proprioceptive data Exploring MOF-based micromotors as SERS sensors Adaptive object detection algorithms for resource constrained autonomous robotic systems Adaptive SIF-EKF estimation for fault detection in attitude control experiments A homogeneous low-resolution face recognition method using correlation features at the edge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1