静息状态功能磁共振成像中的帕金森病因果森林机器学习分析

IF 2.2 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Tomography Pub Date : 2024-06-06 DOI:10.3390/tomography10060068
Gabriel Solana-Lavalle, Michael D. Cusimano, Thomas Steeves, Roberto Rosas-Romero, P. N. Tyrrell
{"title":"静息状态功能磁共振成像中的帕金森病因果森林机器学习分析","authors":"Gabriel Solana-Lavalle, Michael D. Cusimano, Thomas Steeves, Roberto Rosas-Romero, P. N. Tyrrell","doi":"10.3390/tomography10060068","DOIUrl":null,"url":null,"abstract":"In recent years, Artificial Intelligence has been used to assist healthcare professionals in detecting and diagnosing neurodegenerative diseases. In this study, we propose a methodology to analyze functional Magnetic Resonance Imaging signals and perform classification between Parkinson’s disease patients and healthy participants using Machine Learning algorithms. In addition, the proposed approach provides insights into the brain regions affected by the disease. The functional Magnetic Resonance Imaging from the PPMI and 1000-FCP datasets were pre-processed to extract time series from 200 brain regions per participant, resulting in 11,600 features. Causal Forest and Wrapper Feature Subset Selection algorithms were used for dimensionality reduction, resulting in a subset of features based on their heterogeneity and association with the disease. We utilized Logistic Regression and XGBoost algorithms to perform PD detection, achieving 97.6% accuracy, 97.5% F1 score, 97.9% precision, and 97.7%recall by analyzing sets with fewer than 300 features in a population including men and women. Finally, Multiple Correspondence Analysis was employed to visualize the relationships between brain regions and each group (women with Parkinson, female controls, men with Parkinson, male controls). Associations between the Unified Parkinson’s Disease Rating Scale questionnaire results and affected brain regions in different groups were also obtained to show another use case of the methodology. This work proposes a methodology to (1) classify patients and controls with Machine Learning and Causal Forest algorithm and (2) visualize associations between brain regions and groups, providing high-accuracy classification and enhanced interpretability of the correlation between specific brain regions and the disease across different groups.","PeriodicalId":51330,"journal":{"name":"Tomography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Forest Machine Learning Analysis of Parkinson’s Disease in Resting-State Functional Magnetic Resonance Imaging\",\"authors\":\"Gabriel Solana-Lavalle, Michael D. Cusimano, Thomas Steeves, Roberto Rosas-Romero, P. N. Tyrrell\",\"doi\":\"10.3390/tomography10060068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, Artificial Intelligence has been used to assist healthcare professionals in detecting and diagnosing neurodegenerative diseases. In this study, we propose a methodology to analyze functional Magnetic Resonance Imaging signals and perform classification between Parkinson’s disease patients and healthy participants using Machine Learning algorithms. In addition, the proposed approach provides insights into the brain regions affected by the disease. The functional Magnetic Resonance Imaging from the PPMI and 1000-FCP datasets were pre-processed to extract time series from 200 brain regions per participant, resulting in 11,600 features. Causal Forest and Wrapper Feature Subset Selection algorithms were used for dimensionality reduction, resulting in a subset of features based on their heterogeneity and association with the disease. We utilized Logistic Regression and XGBoost algorithms to perform PD detection, achieving 97.6% accuracy, 97.5% F1 score, 97.9% precision, and 97.7%recall by analyzing sets with fewer than 300 features in a population including men and women. Finally, Multiple Correspondence Analysis was employed to visualize the relationships between brain regions and each group (women with Parkinson, female controls, men with Parkinson, male controls). Associations between the Unified Parkinson’s Disease Rating Scale questionnaire results and affected brain regions in different groups were also obtained to show another use case of the methodology. This work proposes a methodology to (1) classify patients and controls with Machine Learning and Causal Forest algorithm and (2) visualize associations between brain regions and groups, providing high-accuracy classification and enhanced interpretability of the correlation between specific brain regions and the disease across different groups.\",\"PeriodicalId\":51330,\"journal\":{\"name\":\"Tomography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tomography10060068\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography10060068","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工智能已被用于协助医护人员检测和诊断神经退行性疾病。在本研究中,我们提出了一种分析功能性磁共振成像信号的方法,并利用机器学习算法对帕金森病患者和健康参与者进行分类。此外,所提出的方法还有助于深入了解受疾病影响的大脑区域。对来自 PPMI 和 1000-FCP 数据集的功能磁共振成像进行预处理,以提取每位参与者 200 个脑区的时间序列,从而得到 11,600 个特征。我们使用因果森林和包装特征子集选择算法进行降维,根据特征的异质性和与疾病的关联性生成特征子集。我们利用 Logistic 回归和 XGBoost 算法来进行 PD 检测,通过分析包括男性和女性在内的人群中少于 300 个特征集,达到了 97.6% 的准确率、97.5% 的 F1 分数、97.9% 的精确率和 97.7% 的召回率。最后,我们采用了多重对应分析法(Multiple Correspondence Analysis)来直观显示脑区与各组(女性帕金森患者、女性对照组、男性帕金森患者、男性对照组)之间的关系。此外,还获得了统一帕金森病评分量表问卷结果与不同组别受影响脑区之间的关联,展示了该方法的另一个应用案例。本研究提出了一种方法:(1) 利用机器学习和因果森林算法对患者和对照组进行分类;(2) 可视化脑区和组别之间的关联,从而提供高精度的分类,并增强不同组别中特定脑区与疾病之间关联的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Causal Forest Machine Learning Analysis of Parkinson’s Disease in Resting-State Functional Magnetic Resonance Imaging
In recent years, Artificial Intelligence has been used to assist healthcare professionals in detecting and diagnosing neurodegenerative diseases. In this study, we propose a methodology to analyze functional Magnetic Resonance Imaging signals and perform classification between Parkinson’s disease patients and healthy participants using Machine Learning algorithms. In addition, the proposed approach provides insights into the brain regions affected by the disease. The functional Magnetic Resonance Imaging from the PPMI and 1000-FCP datasets were pre-processed to extract time series from 200 brain regions per participant, resulting in 11,600 features. Causal Forest and Wrapper Feature Subset Selection algorithms were used for dimensionality reduction, resulting in a subset of features based on their heterogeneity and association with the disease. We utilized Logistic Regression and XGBoost algorithms to perform PD detection, achieving 97.6% accuracy, 97.5% F1 score, 97.9% precision, and 97.7%recall by analyzing sets with fewer than 300 features in a population including men and women. Finally, Multiple Correspondence Analysis was employed to visualize the relationships between brain regions and each group (women with Parkinson, female controls, men with Parkinson, male controls). Associations between the Unified Parkinson’s Disease Rating Scale questionnaire results and affected brain regions in different groups were also obtained to show another use case of the methodology. This work proposes a methodology to (1) classify patients and controls with Machine Learning and Causal Forest algorithm and (2) visualize associations between brain regions and groups, providing high-accuracy classification and enhanced interpretability of the correlation between specific brain regions and the disease across different groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tomography
Tomography Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍: TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine. Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians. Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.
期刊最新文献
Reading Times of Common Musculoskeletal MRI Examinations: A Survey Study. Skeletal Muscle Segmentation at the Level of the Third Lumbar Vertebra (L3) in Low-Dose Computed Tomography: A Lightweight Algorithm. Radiomic Analysis of Treatment Effect for Patients with Radiation Necrosis Treated with Pentoxifylline and Vitamin E. A Joint Classification Method for COVID-19 Lesions Based on Deep Learning and Radiomics. A Scoping Review of Machine-Learning Derived Radiomic Analysis of CT and PET Imaging to Investigate Atherosclerotic Cardiovascular Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1