Justin Hartland, Dylan Ballback, Isaac Stitt, Ryan Taylor, Jacob Salazar, Ella Cheatham, Anuhya Suhas, Vishwam Rathod
{"title":"立方体卫星反力轮姿态控制平台","authors":"Justin Hartland, Dylan Ballback, Isaac Stitt, Ryan Taylor, Jacob Salazar, Ella Cheatham, Anuhya Suhas, Vishwam Rathod","doi":"10.1117/12.3014002","DOIUrl":null,"url":null,"abstract":"In traditional classroom settings, spacecraft attitude dynamics and controls are typically presented through 2-D illustrations of complex 3-D dynamics. This often results in students finding it challenging to bridge the gap between theoretical physics and its practical, real-world applications. To address this challenge, our project aims to design, develop, and manufacture CubeSat controls testbeds. These testbeds are equipped with reaction wheels to enable autonomous attitude control system applications. Notably, each testbed will incorporate three distinct reaction wheels, each mounted orthogonally. This arrangement ensures precise attitude control in all three degrees of freedom. The versatility of these CubeSat testbeds allows users to explore and implement a broad range of control systems. These can range from classical PID controllers, state-space control methods, adaptive controllers, sliding mode control, to more advanced techniques like model predictive control, and robust control methods. The platform can serve both as an educational tool for students and a research apparatus for professionals. The ultimate vision for the CubeSat Reaction Wheel Attitude Control Platform is its seamless integration into a dedicated website called Easy Controls. Here, users worldwide can upload their control algorithms. They can then view a live stream of their algorithm being tested and operationalized in real-time on the physical hardware. This platform not only demystifies spacecraft control dynamics for learners but also fosters a global community of innovators collaborating and refining their control algorithms.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"135 1‐2","pages":"130580X - 130580X-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CubeSat reaction wheel attitude control platform\",\"authors\":\"Justin Hartland, Dylan Ballback, Isaac Stitt, Ryan Taylor, Jacob Salazar, Ella Cheatham, Anuhya Suhas, Vishwam Rathod\",\"doi\":\"10.1117/12.3014002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In traditional classroom settings, spacecraft attitude dynamics and controls are typically presented through 2-D illustrations of complex 3-D dynamics. This often results in students finding it challenging to bridge the gap between theoretical physics and its practical, real-world applications. To address this challenge, our project aims to design, develop, and manufacture CubeSat controls testbeds. These testbeds are equipped with reaction wheels to enable autonomous attitude control system applications. Notably, each testbed will incorporate three distinct reaction wheels, each mounted orthogonally. This arrangement ensures precise attitude control in all three degrees of freedom. The versatility of these CubeSat testbeds allows users to explore and implement a broad range of control systems. These can range from classical PID controllers, state-space control methods, adaptive controllers, sliding mode control, to more advanced techniques like model predictive control, and robust control methods. The platform can serve both as an educational tool for students and a research apparatus for professionals. The ultimate vision for the CubeSat Reaction Wheel Attitude Control Platform is its seamless integration into a dedicated website called Easy Controls. Here, users worldwide can upload their control algorithms. They can then view a live stream of their algorithm being tested and operationalized in real-time on the physical hardware. This platform not only demystifies spacecraft control dynamics for learners but also fosters a global community of innovators collaborating and refining their control algorithms.\",\"PeriodicalId\":178341,\"journal\":{\"name\":\"Defense + Commercial Sensing\",\"volume\":\"135 1‐2\",\"pages\":\"130580X - 130580X-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defense + Commercial Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3014002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In traditional classroom settings, spacecraft attitude dynamics and controls are typically presented through 2-D illustrations of complex 3-D dynamics. This often results in students finding it challenging to bridge the gap between theoretical physics and its practical, real-world applications. To address this challenge, our project aims to design, develop, and manufacture CubeSat controls testbeds. These testbeds are equipped with reaction wheels to enable autonomous attitude control system applications. Notably, each testbed will incorporate three distinct reaction wheels, each mounted orthogonally. This arrangement ensures precise attitude control in all three degrees of freedom. The versatility of these CubeSat testbeds allows users to explore and implement a broad range of control systems. These can range from classical PID controllers, state-space control methods, adaptive controllers, sliding mode control, to more advanced techniques like model predictive control, and robust control methods. The platform can serve both as an educational tool for students and a research apparatus for professionals. The ultimate vision for the CubeSat Reaction Wheel Attitude Control Platform is its seamless integration into a dedicated website called Easy Controls. Here, users worldwide can upload their control algorithms. They can then view a live stream of their algorithm being tested and operationalized in real-time on the physical hardware. This platform not only demystifies spacecraft control dynamics for learners but also fosters a global community of innovators collaborating and refining their control algorithms.