医疗物联网环境下远程患者监护的安全认证协议

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Security and Privacy Pub Date : 2024-06-05 DOI:10.1002/spy2.428
Srijanee Mookherji, Odelu Vanga, R. Prasath, A. K. Das
{"title":"医疗物联网环境下远程患者监护的安全认证协议","authors":"Srijanee Mookherji, Odelu Vanga, R. Prasath, A. K. Das","doi":"10.1002/spy2.428","DOIUrl":null,"url":null,"abstract":"Internet of Medical Things (IoMT) enable users to avail healthcare services remotely. In IoMT, sensor nodes (SNs), like blood pressure sensors and temperature sensors, collect health data from patients and communicate it to Health Workers (HWs) such as doctors, nurses, and so on. The HWs cater to the patients remotely, known as remote patient monitoring (RPM), by using data obtained from SNs. The communicated health data between SNs and HWs are sensitive in nature. Leakage and modification of such data leads to huge consequences, particularly patient death during medical emergencies. Hence, ensuring mutual authentication along with data integrity and privacy is of utmost important in the healthcare domain. In the literature, many authentication protocols are presented for healthcare applications specific to IoMT‐RPM. But, most of the existing approaches fail to provide adequate security against well‐known attacks includes impersonation and man‐in‐the‐middle attacks. In this paper, we propose a privacy preserving authentication protocol for IoMT‐RPM which is secure against various known attacks. We present a rigorous formal security analysis of our protocol under the extended Canetti‐Krawczyk (eCK) adversary model. In addition, we also perform formal verification using Tamarin Prover, a symbolic formal analysis tool. The results show that the proposed protocol is secure under eCK‐adversary model. We then present the comparative performance analysis to show the efficiency of the proposed protocol over the existing protocols. As a result, the proposed protocol provides high security without compromising the performance over the existing protocols, and therefore, our protocol is very much suitable for real‐time applications.","PeriodicalId":29939,"journal":{"name":"Security and Privacy","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A secure authentication protocol for remote patient monitoring in an internet‐of‐medical‐things environment\",\"authors\":\"Srijanee Mookherji, Odelu Vanga, R. Prasath, A. K. Das\",\"doi\":\"10.1002/spy2.428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Medical Things (IoMT) enable users to avail healthcare services remotely. In IoMT, sensor nodes (SNs), like blood pressure sensors and temperature sensors, collect health data from patients and communicate it to Health Workers (HWs) such as doctors, nurses, and so on. The HWs cater to the patients remotely, known as remote patient monitoring (RPM), by using data obtained from SNs. The communicated health data between SNs and HWs are sensitive in nature. Leakage and modification of such data leads to huge consequences, particularly patient death during medical emergencies. Hence, ensuring mutual authentication along with data integrity and privacy is of utmost important in the healthcare domain. In the literature, many authentication protocols are presented for healthcare applications specific to IoMT‐RPM. But, most of the existing approaches fail to provide adequate security against well‐known attacks includes impersonation and man‐in‐the‐middle attacks. In this paper, we propose a privacy preserving authentication protocol for IoMT‐RPM which is secure against various known attacks. We present a rigorous formal security analysis of our protocol under the extended Canetti‐Krawczyk (eCK) adversary model. In addition, we also perform formal verification using Tamarin Prover, a symbolic formal analysis tool. The results show that the proposed protocol is secure under eCK‐adversary model. We then present the comparative performance analysis to show the efficiency of the proposed protocol over the existing protocols. As a result, the proposed protocol provides high security without compromising the performance over the existing protocols, and therefore, our protocol is very much suitable for real‐time applications.\",\"PeriodicalId\":29939,\"journal\":{\"name\":\"Security and Privacy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/spy2.428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spy2.428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

医疗物联网(IoMT)使用户能够远程享受医疗保健服务。在 IoMT 中,传感器节点(SN),如血压传感器和温度传感器,收集患者的健康数据,并将其传送给医生、护士等健康工作者(HW)。健康工作者利用从 SN 获取的数据对患者进行远程护理,即远程患者监护(RPM)。SN 和 HW 之间通信的健康数据具有敏感性。泄漏和修改这些数据会导致严重后果,特别是在医疗紧急情况下造成病人死亡。因此,在医疗保健领域,确保相互认证以及数据完整性和隐私至关重要。在文献中,针对 IoMT-RPM 的医疗保健应用提出了许多认证协议。但是,大多数现有方法都无法提供足够的安全性来抵御众所周知的攻击,包括冒名顶替和中间人攻击。在本文中,我们提出了一种针对 IoMT-RPM 的隐私保护认证协议,该协议可安全抵御各种已知攻击。我们在扩展的 Canetti-Krawczyk (eCK) 对手模型下对我们的协议进行了严格的形式安全性分析。此外,我们还使用符号形式分析工具 Tamarin Prover 进行了形式验证。结果表明,所提出的协议在 eCK 对手模型下是安全的。然后,我们进行了性能对比分析,以显示与现有协议相比,所提协议的效率更高。结果表明,与现有协议相比,我们提出的协议在不影响性能的情况下提供了很高的安全性,因此,我们的协议非常适合实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A secure authentication protocol for remote patient monitoring in an internet‐of‐medical‐things environment
Internet of Medical Things (IoMT) enable users to avail healthcare services remotely. In IoMT, sensor nodes (SNs), like blood pressure sensors and temperature sensors, collect health data from patients and communicate it to Health Workers (HWs) such as doctors, nurses, and so on. The HWs cater to the patients remotely, known as remote patient monitoring (RPM), by using data obtained from SNs. The communicated health data between SNs and HWs are sensitive in nature. Leakage and modification of such data leads to huge consequences, particularly patient death during medical emergencies. Hence, ensuring mutual authentication along with data integrity and privacy is of utmost important in the healthcare domain. In the literature, many authentication protocols are presented for healthcare applications specific to IoMT‐RPM. But, most of the existing approaches fail to provide adequate security against well‐known attacks includes impersonation and man‐in‐the‐middle attacks. In this paper, we propose a privacy preserving authentication protocol for IoMT‐RPM which is secure against various known attacks. We present a rigorous formal security analysis of our protocol under the extended Canetti‐Krawczyk (eCK) adversary model. In addition, we also perform formal verification using Tamarin Prover, a symbolic formal analysis tool. The results show that the proposed protocol is secure under eCK‐adversary model. We then present the comparative performance analysis to show the efficiency of the proposed protocol over the existing protocols. As a result, the proposed protocol provides high security without compromising the performance over the existing protocols, and therefore, our protocol is very much suitable for real‐time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.30%
发文量
80
期刊最新文献
IoT malware detection using static and dynamic analysis techniques: A systematic literature review An approach for mitigating cognitive load in password management by integrating QR codes and steganography Cryptographic methods for secured communication in SDN‐based VANETs: A performance analysis Exploring security and privacy enhancement technologies in the Internet of Things: A comprehensive review Research on privacy leakage of celebrity's ID card number based on real‐name authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1