磁控溅射聚四氟乙烯-银复合涂层的抗菌和耐腐蚀性能

Haiwen Li, Zhiwen He, Wei Wu, Long Zheng, Qingfang Xu, Tenghua Gao, Song Zhang, Honglian Dai, Takashi Goto, Rong Tu
{"title":"磁控溅射聚四氟乙烯-银复合涂层的抗菌和耐腐蚀性能","authors":"Haiwen Li, Zhiwen He, Wei Wu, Long Zheng, Qingfang Xu, Tenghua Gao, Song Zhang, Honglian Dai, Takashi Goto, Rong Tu","doi":"10.1116/6.0003545","DOIUrl":null,"url":null,"abstract":"Titanium alloy and stainless steel implants have been widely applied in orthopedics. However, harmful ions released from implant corrosion caused by human body fluids and bacterial infections may inhibit patients’ recovery. In this work, a polytetrafluoroethylene-silver composite coating was prepared by RF unbalanced magnetron sputtering to improve the bacterial and corrosion resistance of the SS316L. The removal rates of the composite coatings for Escherichia coli and Staphylococcus aureus reached 97.27% and 99.99%, respectively. The contact angle of 131.5° and fluorescence staining experiments show that the composite coating has an antiadhesive effect on bacteria and less cytotoxicity against osteoblasts. The corrosion voltage of the composite coating was much higher than that of the control SS316L substrate, and the corrosion current density was reduced to 1/3, implying the enhancement of the corrosion resistance of the SS316L substrate.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"65 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial and corrosion resistance of polytetrafluoroethylene-silver composite coatings by magnetron sputtering\",\"authors\":\"Haiwen Li, Zhiwen He, Wei Wu, Long Zheng, Qingfang Xu, Tenghua Gao, Song Zhang, Honglian Dai, Takashi Goto, Rong Tu\",\"doi\":\"10.1116/6.0003545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Titanium alloy and stainless steel implants have been widely applied in orthopedics. However, harmful ions released from implant corrosion caused by human body fluids and bacterial infections may inhibit patients’ recovery. In this work, a polytetrafluoroethylene-silver composite coating was prepared by RF unbalanced magnetron sputtering to improve the bacterial and corrosion resistance of the SS316L. The removal rates of the composite coatings for Escherichia coli and Staphylococcus aureus reached 97.27% and 99.99%, respectively. The contact angle of 131.5° and fluorescence staining experiments show that the composite coating has an antiadhesive effect on bacteria and less cytotoxicity against osteoblasts. The corrosion voltage of the composite coating was much higher than that of the control SS316L substrate, and the corrosion current density was reduced to 1/3, implying the enhancement of the corrosion resistance of the SS316L substrate.\",\"PeriodicalId\":170900,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":\"65 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钛合金和不锈钢植入物已广泛应用于整形外科。然而,人体体液和细菌感染造成的植入物腐蚀释放出的有害离子可能会影响患者的康复。本研究采用射频不平衡磁控溅射法制备了聚四氟乙烯-银复合涂层,以提高 SS316L 的抗菌性和耐腐蚀性。复合涂层对大肠杆菌和金黄色葡萄球菌的去除率分别达到 97.27% 和 99.99%。131.5° 的接触角和荧光染色实验表明,复合涂层对细菌有抗粘附作用,对成骨细胞的细胞毒性较小。复合涂层的腐蚀电压远高于对照的 SS316L 基材,腐蚀电流密度降低到 1/3,这意味着 SS316L 基材的耐腐蚀性增强了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bacterial and corrosion resistance of polytetrafluoroethylene-silver composite coatings by magnetron sputtering
Titanium alloy and stainless steel implants have been widely applied in orthopedics. However, harmful ions released from implant corrosion caused by human body fluids and bacterial infections may inhibit patients’ recovery. In this work, a polytetrafluoroethylene-silver composite coating was prepared by RF unbalanced magnetron sputtering to improve the bacterial and corrosion resistance of the SS316L. The removal rates of the composite coatings for Escherichia coli and Staphylococcus aureus reached 97.27% and 99.99%, respectively. The contact angle of 131.5° and fluorescence staining experiments show that the composite coating has an antiadhesive effect on bacteria and less cytotoxicity against osteoblasts. The corrosion voltage of the composite coating was much higher than that of the control SS316L substrate, and the corrosion current density was reduced to 1/3, implying the enhancement of the corrosion resistance of the SS316L substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurements of atomic hydrogen recombination coefficients and the reduction of Al2O3 using a heat flux sensor Extension of ion-neutral reactive collision model DNT+ to polar molecules based on average dipole orientation theory Molecular beam epitaxy of Pd-Fe graded alloy films for standing spin waves control Revealing the controlling mechanisms of atomic layer etching for high-k dielectrics in conventional inductively coupled plasma etching tool Introduction to reproducible laboratory hard x-ray photoelectron spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1