{"title":"使用基于剪枝的轻量级深度学习模型进行海洋物体图像分类的研究","authors":"Younghoon Han, Chunju Lee, Jaegoo Kang","doi":"10.9766/kimst.2024.27.3.346","DOIUrl":null,"url":null,"abstract":"Deep learning models require high computing power due to a substantial amount of computation. It is difficult to use them in devices with limited computing environments, such as coastal surveillance equipments. In this study, a lightweight model is constructed by analyzing the weight changes of the convolutional layers during the training process based on MobileNet and then pruning the layers that affects the model less. The performance comparison results show that the lightweight model maintains performance while reducing computational load, parameters, model size, and data processing speed. As a result of this study, an effective pruning method for constructing lightweight deep learning models and the possibility of using equipment resources efficiently through lightweight models in limited computing environments such as coastal surveillance equipments are presented.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":"52 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Maritime Object Image Classification Using a Pruning-Based Lightweight Deep-Learning Model\",\"authors\":\"Younghoon Han, Chunju Lee, Jaegoo Kang\",\"doi\":\"10.9766/kimst.2024.27.3.346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models require high computing power due to a substantial amount of computation. It is difficult to use them in devices with limited computing environments, such as coastal surveillance equipments. In this study, a lightweight model is constructed by analyzing the weight changes of the convolutional layers during the training process based on MobileNet and then pruning the layers that affects the model less. The performance comparison results show that the lightweight model maintains performance while reducing computational load, parameters, model size, and data processing speed. As a result of this study, an effective pruning method for constructing lightweight deep learning models and the possibility of using equipment resources efficiently through lightweight models in limited computing environments such as coastal surveillance equipments are presented.\",\"PeriodicalId\":17292,\"journal\":{\"name\":\"Journal of the Korea Institute of Military Science and Technology\",\"volume\":\"52 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korea Institute of Military Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9766/kimst.2024.27.3.346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2024.27.3.346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study on Maritime Object Image Classification Using a Pruning-Based Lightweight Deep-Learning Model
Deep learning models require high computing power due to a substantial amount of computation. It is difficult to use them in devices with limited computing environments, such as coastal surveillance equipments. In this study, a lightweight model is constructed by analyzing the weight changes of the convolutional layers during the training process based on MobileNet and then pruning the layers that affects the model less. The performance comparison results show that the lightweight model maintains performance while reducing computational load, parameters, model size, and data processing speed. As a result of this study, an effective pruning method for constructing lightweight deep learning models and the possibility of using equipment resources efficiently through lightweight models in limited computing environments such as coastal surveillance equipments are presented.