Miguel Angel Abrego Tello, Mahsa Lotfi Marchoubeh, Ingrid Fritsch
{"title":"微电极及其与电解质和绝缘体界面的充电电流动力学建模,重点关注 SU-8 基质上的微加工金微带电极","authors":"Miguel Angel Abrego Tello, Mahsa Lotfi Marchoubeh, Ingrid Fritsch","doi":"10.1149/1945-7111/ad546f","DOIUrl":null,"url":null,"abstract":"\n The suitability of electrochemical methods for quantitative measurements at microdevices is influenced by the relatively large electrode-insulator interface-to-electrode area ratio, greatly impacting charging dynamics due to interactions among electrolyte and conductor/insulator materials. The resulting charging current can overwhelm the current from redox chemistry. The device studied here features a 70-µm×100-µm electroactive window, hosts gold coplanar microband electrodes, and is insulated by SU-8, which serves as both overlayer and substrate. The overlayer defines the electroactive length and isolates the leads of the electrodes from the sample solution. Cyclic voltammetry in 0.10 M KCl yields unexpected, nonlinear dependence of current on scan rate, which can be explained with two empirical approaches. The first employs an equivalent circuit, involving leakage resistance and double-layer capacitance in parallel, to address both background processes and electrode imperfections as a function of scan rate. The second associates the enhanced current to a changing-chargeable area resulting from interface irregularities. Prior publications on alternative conductor-insulator materials are benchmarked in this study. The comparison of the materials shows that charging dynamics for devices made with SU-8 lead to more favorable electrochemical performance than for those constructed with glass, epoxy, and silicon nitride, and under certain circumstances, polyimide and Tefzel.","PeriodicalId":509718,"journal":{"name":"Journal of The Electrochemical Society","volume":"9 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Charging Current Dynamics at Microelectrodes and their Interfaces with Electrolyte and Insulators with a Focus on Microfabricated Gold Microband Electrodes on an SU-8 Substrate\",\"authors\":\"Miguel Angel Abrego Tello, Mahsa Lotfi Marchoubeh, Ingrid Fritsch\",\"doi\":\"10.1149/1945-7111/ad546f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The suitability of electrochemical methods for quantitative measurements at microdevices is influenced by the relatively large electrode-insulator interface-to-electrode area ratio, greatly impacting charging dynamics due to interactions among electrolyte and conductor/insulator materials. The resulting charging current can overwhelm the current from redox chemistry. The device studied here features a 70-µm×100-µm electroactive window, hosts gold coplanar microband electrodes, and is insulated by SU-8, which serves as both overlayer and substrate. The overlayer defines the electroactive length and isolates the leads of the electrodes from the sample solution. Cyclic voltammetry in 0.10 M KCl yields unexpected, nonlinear dependence of current on scan rate, which can be explained with two empirical approaches. The first employs an equivalent circuit, involving leakage resistance and double-layer capacitance in parallel, to address both background processes and electrode imperfections as a function of scan rate. The second associates the enhanced current to a changing-chargeable area resulting from interface irregularities. Prior publications on alternative conductor-insulator materials are benchmarked in this study. The comparison of the materials shows that charging dynamics for devices made with SU-8 lead to more favorable electrochemical performance than for those constructed with glass, epoxy, and silicon nitride, and under certain circumstances, polyimide and Tefzel.\",\"PeriodicalId\":509718,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad546f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad546f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Charging Current Dynamics at Microelectrodes and their Interfaces with Electrolyte and Insulators with a Focus on Microfabricated Gold Microband Electrodes on an SU-8 Substrate
The suitability of electrochemical methods for quantitative measurements at microdevices is influenced by the relatively large electrode-insulator interface-to-electrode area ratio, greatly impacting charging dynamics due to interactions among electrolyte and conductor/insulator materials. The resulting charging current can overwhelm the current from redox chemistry. The device studied here features a 70-µm×100-µm electroactive window, hosts gold coplanar microband electrodes, and is insulated by SU-8, which serves as both overlayer and substrate. The overlayer defines the electroactive length and isolates the leads of the electrodes from the sample solution. Cyclic voltammetry in 0.10 M KCl yields unexpected, nonlinear dependence of current on scan rate, which can be explained with two empirical approaches. The first employs an equivalent circuit, involving leakage resistance and double-layer capacitance in parallel, to address both background processes and electrode imperfections as a function of scan rate. The second associates the enhanced current to a changing-chargeable area resulting from interface irregularities. Prior publications on alternative conductor-insulator materials are benchmarked in this study. The comparison of the materials shows that charging dynamics for devices made with SU-8 lead to more favorable electrochemical performance than for those constructed with glass, epoxy, and silicon nitride, and under certain circumstances, polyimide and Tefzel.