{"title":"通过在林冠上下长期测量硝酸气体的干沉降量","authors":"Zhaojie Wu, Mao Xu, Atsuyuki Sorimachi, Hiroyuki Sase, Makoto Watanabe, Kazuhide Matsuda","doi":"10.1007/s44273-024-00034-z","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive nitrogen negatively affects terrestrial ecosystems by excessive deposition. Nitric acid gas (HNO<sub>3</sub>), a component of reactive nitrogen, is readily deposited on ground surfaces due to its high reactivity. However, there have been recent cases in which suppressed deposition fluxes, including upward fluxes, were observed above forests. As the mechanisms of HNO<sub>3</sub> dry deposition on forest surfaces are not fully understood, the accuracy of dry deposition estimates remains uncertain. To reduce uncertainties in the estimation, we investigated dry deposition of HNO<sub>3</sub> by 1-year measurement in a forest. We measured the vertical profiles of HNO<sub>3</sub>, nitrate, and sulfate in PM<sub>2.5</sub> in a deciduous forest in suburban Tokyo (FM Tama). We observed their concentrations above the forest canopy (30 m) and near the forest floor (2 and 0.2 m) using the denuder/filter pack from October 2020 to September 2021. The HNO<sub>3</sub> concentration decreased significantly from 30 to 2 m. However, the decrease in HNO<sub>3</sub> was not as significant, and occasionally, emission profiles were produced between 2 and 0.2 m. This was likely caused by HNO<sub>3</sub> generated by the volatilization of NH<sub>4</sub>NO<sub>3</sub> near the forest floor, which was warmed by sunlight during daytime in both leafy and leafless periods. Conversely, HNO<sub>3</sub> concentrations at 30 m were much higher than those at 2 m and 0.2 m, indicating that the forest acted as a sink for HNO<sub>3</sub> from a long-term perspective. It is presumed that HNO<sub>3</sub>, generated just above the forest canopy, could cause an upward flux if a temperature difference of several degrees occurs between 25 and 20 m.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-024-00034-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Dry deposition of nitric acid gas by long-term measurement above and below a forest canopy\",\"authors\":\"Zhaojie Wu, Mao Xu, Atsuyuki Sorimachi, Hiroyuki Sase, Makoto Watanabe, Kazuhide Matsuda\",\"doi\":\"10.1007/s44273-024-00034-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reactive nitrogen negatively affects terrestrial ecosystems by excessive deposition. Nitric acid gas (HNO<sub>3</sub>), a component of reactive nitrogen, is readily deposited on ground surfaces due to its high reactivity. However, there have been recent cases in which suppressed deposition fluxes, including upward fluxes, were observed above forests. As the mechanisms of HNO<sub>3</sub> dry deposition on forest surfaces are not fully understood, the accuracy of dry deposition estimates remains uncertain. To reduce uncertainties in the estimation, we investigated dry deposition of HNO<sub>3</sub> by 1-year measurement in a forest. We measured the vertical profiles of HNO<sub>3</sub>, nitrate, and sulfate in PM<sub>2.5</sub> in a deciduous forest in suburban Tokyo (FM Tama). We observed their concentrations above the forest canopy (30 m) and near the forest floor (2 and 0.2 m) using the denuder/filter pack from October 2020 to September 2021. The HNO<sub>3</sub> concentration decreased significantly from 30 to 2 m. However, the decrease in HNO<sub>3</sub> was not as significant, and occasionally, emission profiles were produced between 2 and 0.2 m. This was likely caused by HNO<sub>3</sub> generated by the volatilization of NH<sub>4</sub>NO<sub>3</sub> near the forest floor, which was warmed by sunlight during daytime in both leafy and leafless periods. Conversely, HNO<sub>3</sub> concentrations at 30 m were much higher than those at 2 m and 0.2 m, indicating that the forest acted as a sink for HNO<sub>3</sub> from a long-term perspective. It is presumed that HNO<sub>3</sub>, generated just above the forest canopy, could cause an upward flux if a temperature difference of several degrees occurs between 25 and 20 m.</p></div>\",\"PeriodicalId\":45358,\"journal\":{\"name\":\"Asian Journal of Atmospheric Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44273-024-00034-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Atmospheric Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44273-024-00034-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-024-00034-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Dry deposition of nitric acid gas by long-term measurement above and below a forest canopy
Reactive nitrogen negatively affects terrestrial ecosystems by excessive deposition. Nitric acid gas (HNO3), a component of reactive nitrogen, is readily deposited on ground surfaces due to its high reactivity. However, there have been recent cases in which suppressed deposition fluxes, including upward fluxes, were observed above forests. As the mechanisms of HNO3 dry deposition on forest surfaces are not fully understood, the accuracy of dry deposition estimates remains uncertain. To reduce uncertainties in the estimation, we investigated dry deposition of HNO3 by 1-year measurement in a forest. We measured the vertical profiles of HNO3, nitrate, and sulfate in PM2.5 in a deciduous forest in suburban Tokyo (FM Tama). We observed their concentrations above the forest canopy (30 m) and near the forest floor (2 and 0.2 m) using the denuder/filter pack from October 2020 to September 2021. The HNO3 concentration decreased significantly from 30 to 2 m. However, the decrease in HNO3 was not as significant, and occasionally, emission profiles were produced between 2 and 0.2 m. This was likely caused by HNO3 generated by the volatilization of NH4NO3 near the forest floor, which was warmed by sunlight during daytime in both leafy and leafless periods. Conversely, HNO3 concentrations at 30 m were much higher than those at 2 m and 0.2 m, indicating that the forest acted as a sink for HNO3 from a long-term perspective. It is presumed that HNO3, generated just above the forest canopy, could cause an upward flux if a temperature difference of several degrees occurs between 25 and 20 m.