{"title":"关于掺镨氧化铟锌薄膜晶体管的高迁移率和更高可靠性的研究","authors":"Juncheng Xiao, Shimin Ge, Zhixiong Jiang, Jing Liu, Dong Yuan, Ce Liang, Miao Xu, Shan Li, Hongyuan Xu, Xianlai Wang, Shengdong Zhang","doi":"10.1088/1361-6641/ad5465","DOIUrl":null,"url":null,"abstract":"\n It is generally accepted that there is a trade-off relationship between mobility and stability for oxide thin film transistor (TFT) devices. Different doping ratios of Ln praseodymium (Pr) into indium (In) zinc (Zn) oxide have been employed as the active layer to get 1# and 2# amorphous oxide semiconductor (AOS) TFTs in this work. The 1#-based TFTs exhibited a high mobility of 49.84 cm2 V−1 s−1 due to the increased concentration of In. By further elevating the Pr doping ratio of the film, the 2#-based TFT obtained both a good mobility of 26.65 cm2 V−1 s−1, and a promising stability, showing a positive-bias temperature stress (PBTS) stability of ∆VTH = 1.56 V and a negative-bias temperature illumination stress (NBTIS) stability of ∆VTH = −1.47 V. It was revealed that the low energy charge transfer state of Pr in 2# film absorbs the visible light, leading to suppressed photo-induced carriers and thus a good illumination reliability of the 2#-based TFTs. In practice, the LCD panel based 2# ACT TFT shows a well stable performance even under 10000-nit illumination. The result indicates a promising strategy to accelerate the commercialization of AOS TFTs to large-panel display production.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the high mobility and improved reliability of Pr-doped indium zinc oxide thin film transistors\",\"authors\":\"Juncheng Xiao, Shimin Ge, Zhixiong Jiang, Jing Liu, Dong Yuan, Ce Liang, Miao Xu, Shan Li, Hongyuan Xu, Xianlai Wang, Shengdong Zhang\",\"doi\":\"10.1088/1361-6641/ad5465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n It is generally accepted that there is a trade-off relationship between mobility and stability for oxide thin film transistor (TFT) devices. Different doping ratios of Ln praseodymium (Pr) into indium (In) zinc (Zn) oxide have been employed as the active layer to get 1# and 2# amorphous oxide semiconductor (AOS) TFTs in this work. The 1#-based TFTs exhibited a high mobility of 49.84 cm2 V−1 s−1 due to the increased concentration of In. By further elevating the Pr doping ratio of the film, the 2#-based TFT obtained both a good mobility of 26.65 cm2 V−1 s−1, and a promising stability, showing a positive-bias temperature stress (PBTS) stability of ∆VTH = 1.56 V and a negative-bias temperature illumination stress (NBTIS) stability of ∆VTH = −1.47 V. It was revealed that the low energy charge transfer state of Pr in 2# film absorbs the visible light, leading to suppressed photo-induced carriers and thus a good illumination reliability of the 2#-based TFTs. In practice, the LCD panel based 2# ACT TFT shows a well stable performance even under 10000-nit illumination. The result indicates a promising strategy to accelerate the commercialization of AOS TFTs to large-panel display production.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad5465\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad5465","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A study on the high mobility and improved reliability of Pr-doped indium zinc oxide thin film transistors
It is generally accepted that there is a trade-off relationship between mobility and stability for oxide thin film transistor (TFT) devices. Different doping ratios of Ln praseodymium (Pr) into indium (In) zinc (Zn) oxide have been employed as the active layer to get 1# and 2# amorphous oxide semiconductor (AOS) TFTs in this work. The 1#-based TFTs exhibited a high mobility of 49.84 cm2 V−1 s−1 due to the increased concentration of In. By further elevating the Pr doping ratio of the film, the 2#-based TFT obtained both a good mobility of 26.65 cm2 V−1 s−1, and a promising stability, showing a positive-bias temperature stress (PBTS) stability of ∆VTH = 1.56 V and a negative-bias temperature illumination stress (NBTIS) stability of ∆VTH = −1.47 V. It was revealed that the low energy charge transfer state of Pr in 2# film absorbs the visible light, leading to suppressed photo-induced carriers and thus a good illumination reliability of the 2#-based TFTs. In practice, the LCD panel based 2# ACT TFT shows a well stable performance even under 10000-nit illumination. The result indicates a promising strategy to accelerate the commercialization of AOS TFTs to large-panel display production.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.