新型色氨酸羟化酶抑制剂 TPT-001 可逆转 PAH、血管重塑和增殖-炎症基因表达

IF 8.4 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS JACC: Basic to Translational Science Pub Date : 2024-07-01 DOI:10.1016/j.jacbts.2024.04.006
{"title":"新型色氨酸羟化酶抑制剂 TPT-001 可逆转 PAH、血管重塑和增殖-炎症基因表达","authors":"","doi":"10.1016/j.jacbts.2024.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>The serotonin pathway has long been proposed as a promising target for pulmonary arterial hypertension (PAH)—a progressive and uncurable disease. We developed a highly specific inhibitor of the serotonin synthesizing enzyme tryptophan hydroxylase 1 (TPH1), TPT-001 (TPHi). In this study, the authors sought to treat severe PAH in the Sugen/hypoxia (SuHx) rat model with the oral TPHi TPT-001. Male Sprague Dawley rats were divided into 3 groups: 1) ConNx, control animals; 2) SuHx, injected subcutaneously with SU5416 and exposed to chronic hypoxia for 3 weeks, followed by 6 weeks in room air; and 3) SuHx+TPHi, SuHx animals treated orally with TPHi for 5 weeks. Closed-chest right- and left heart catheterization and echocardiography were performed. Lungs were subject to histologic and mRNA sequencing analyses. Compared with SuHx-exposed rats, which developed severe PAH and right ventricular (RV) dysfunction, TPHi-treated SuHx rats had greatly lowered RV systolic (mean ± SEM: 41 ± 2.3 mm Hg vs 86 ± 6.5 mm Hg; <em>P</em> &lt; 0.001) and end-diastolic (mean ± SEM: 4 ± 0.7 mm Hg vs 14 ± 1.7 mm Hg; <em>P</em> &lt; 0.001) pressures, decreased RV hypertrophy and dilation (all not significantly different from control rats), and reversed pulmonary vascular remodeling. We identified perivascular infiltration of CD3<sup>+</sup> T cells and proinflammatory F4/80<sup>+</sup> and CD68<sup>+</sup> macrophages and proliferating cell nuclear antigen–positive alveolar epithelial cells all suppressed by TPHi treatment. Whole-lung mRNA sequencing in SuHx rats showed distinct gene expression patterns related to pulmonary arterial smooth muscle cell proliferation (Rpph1, Lgals3, Gata4), reactive oxygen species, inflammation (Tnfsrf17, iNOS), and vasodilation (Pde1b, Kng1), which reversed expression with TPHi treatment. Inhibition of TPH1 with a new class of drugs (here, TPT-001) has the potential to attenuate or even reverse severe PAH and associated RV dysfunction in vivo by blocking the serotonin pathway.</p></div>","PeriodicalId":14831,"journal":{"name":"JACC: Basic to Translational Science","volume":"9 7","pages":"Pages 890-902"},"PeriodicalIF":8.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452302X2400175X/pdfft?md5=4e4774270d3ec22c79fc073ffef59952&pid=1-s2.0-S2452302X2400175X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel Tryptophan Hydroxylase Inhibitor TPT-001 Reverses PAH, Vascular Remodeling, and Proliferative-Proinflammatory Gene Expression\",\"authors\":\"\",\"doi\":\"10.1016/j.jacbts.2024.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The serotonin pathway has long been proposed as a promising target for pulmonary arterial hypertension (PAH)—a progressive and uncurable disease. We developed a highly specific inhibitor of the serotonin synthesizing enzyme tryptophan hydroxylase 1 (TPH1), TPT-001 (TPHi). In this study, the authors sought to treat severe PAH in the Sugen/hypoxia (SuHx) rat model with the oral TPHi TPT-001. Male Sprague Dawley rats were divided into 3 groups: 1) ConNx, control animals; 2) SuHx, injected subcutaneously with SU5416 and exposed to chronic hypoxia for 3 weeks, followed by 6 weeks in room air; and 3) SuHx+TPHi, SuHx animals treated orally with TPHi for 5 weeks. Closed-chest right- and left heart catheterization and echocardiography were performed. Lungs were subject to histologic and mRNA sequencing analyses. Compared with SuHx-exposed rats, which developed severe PAH and right ventricular (RV) dysfunction, TPHi-treated SuHx rats had greatly lowered RV systolic (mean ± SEM: 41 ± 2.3 mm Hg vs 86 ± 6.5 mm Hg; <em>P</em> &lt; 0.001) and end-diastolic (mean ± SEM: 4 ± 0.7 mm Hg vs 14 ± 1.7 mm Hg; <em>P</em> &lt; 0.001) pressures, decreased RV hypertrophy and dilation (all not significantly different from control rats), and reversed pulmonary vascular remodeling. We identified perivascular infiltration of CD3<sup>+</sup> T cells and proinflammatory F4/80<sup>+</sup> and CD68<sup>+</sup> macrophages and proliferating cell nuclear antigen–positive alveolar epithelial cells all suppressed by TPHi treatment. Whole-lung mRNA sequencing in SuHx rats showed distinct gene expression patterns related to pulmonary arterial smooth muscle cell proliferation (Rpph1, Lgals3, Gata4), reactive oxygen species, inflammation (Tnfsrf17, iNOS), and vasodilation (Pde1b, Kng1), which reversed expression with TPHi treatment. Inhibition of TPH1 with a new class of drugs (here, TPT-001) has the potential to attenuate or even reverse severe PAH and associated RV dysfunction in vivo by blocking the serotonin pathway.</p></div>\",\"PeriodicalId\":14831,\"journal\":{\"name\":\"JACC: Basic to Translational Science\",\"volume\":\"9 7\",\"pages\":\"Pages 890-902\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452302X2400175X/pdfft?md5=4e4774270d3ec22c79fc073ffef59952&pid=1-s2.0-S2452302X2400175X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACC: Basic to Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452302X2400175X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC: Basic to Translational Science","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452302X2400175X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,人们一直认为血清素通路是治疗肺动脉高压(PAH)--一种进行性和无法治愈的疾病--的有希望的靶点。我们开发了一种高度特异性的血清素合成酶色氨酸羟化酶 1 (TPH1) 抑制剂 TPT-001 (TPHi)。在这项研究中,作者试图用口服 TPHi TPT-001 治疗苏根/缺氧(SuHx)大鼠模型中的严重 PAH。雄性 Sprague Dawley 大鼠被分为 3 组:1)ConNx,对照组;2)SuHx,皮下注射 SU5416 并暴露于慢性缺氧环境 3 周,然后在室内空气中暴露 6 周;3)SuHx+TPHi,SuHx 动物口服 TPHi 治疗 5 周。进行闭胸左右心导管检查和超声心动图检查。对肺部进行组织学和 mRNA 测序分析。与发生严重 PAH 和右心室(RV)功能障碍的 SuHx 暴露大鼠相比,经 TPHi 处理的 SuHx 大鼠的 RV 收缩压(平均值 ± SEM:41 ± 2.3 mm Hg vs 86 ± 6.5 mm Hg;P < 0.001)和舒张末压(平均值 ± SEM:4 ± 0.7 mm Hg vs 14 ± 1.7 mm Hg;P <;0.001),减少了 RV 肥厚和扩张(与对照组大鼠相比均无显著差异),并逆转了肺血管重塑。我们发现 CD3+ T 细胞和促炎 F4/80+ 及 CD68+ 巨噬细胞以及增殖细胞核抗原阳性肺泡上皮细胞的血管周围浸润均受到 TPHi 治疗的抑制。对 SuHx 大鼠进行的全肺 mRNA 测序显示,与肺动脉平滑肌细胞增殖(Rpph1、Lgals3、Gata4)、活性氧、炎症(Tnfsrf17、iNOS)和血管舒张(Pde1b、Kng1)相关的基因表达模式各不相同,TPHi 治疗可逆转这些基因的表达。用一类新药(此处为 TPT-001)抑制 TPH1 有可能通过阻断血清素通路,减轻甚至逆转体内严重 PAH 和相关的 RV 功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Tryptophan Hydroxylase Inhibitor TPT-001 Reverses PAH, Vascular Remodeling, and Proliferative-Proinflammatory Gene Expression

The serotonin pathway has long been proposed as a promising target for pulmonary arterial hypertension (PAH)—a progressive and uncurable disease. We developed a highly specific inhibitor of the serotonin synthesizing enzyme tryptophan hydroxylase 1 (TPH1), TPT-001 (TPHi). In this study, the authors sought to treat severe PAH in the Sugen/hypoxia (SuHx) rat model with the oral TPHi TPT-001. Male Sprague Dawley rats were divided into 3 groups: 1) ConNx, control animals; 2) SuHx, injected subcutaneously with SU5416 and exposed to chronic hypoxia for 3 weeks, followed by 6 weeks in room air; and 3) SuHx+TPHi, SuHx animals treated orally with TPHi for 5 weeks. Closed-chest right- and left heart catheterization and echocardiography were performed. Lungs were subject to histologic and mRNA sequencing analyses. Compared with SuHx-exposed rats, which developed severe PAH and right ventricular (RV) dysfunction, TPHi-treated SuHx rats had greatly lowered RV systolic (mean ± SEM: 41 ± 2.3 mm Hg vs 86 ± 6.5 mm Hg; P < 0.001) and end-diastolic (mean ± SEM: 4 ± 0.7 mm Hg vs 14 ± 1.7 mm Hg; P < 0.001) pressures, decreased RV hypertrophy and dilation (all not significantly different from control rats), and reversed pulmonary vascular remodeling. We identified perivascular infiltration of CD3+ T cells and proinflammatory F4/80+ and CD68+ macrophages and proliferating cell nuclear antigen–positive alveolar epithelial cells all suppressed by TPHi treatment. Whole-lung mRNA sequencing in SuHx rats showed distinct gene expression patterns related to pulmonary arterial smooth muscle cell proliferation (Rpph1, Lgals3, Gata4), reactive oxygen species, inflammation (Tnfsrf17, iNOS), and vasodilation (Pde1b, Kng1), which reversed expression with TPHi treatment. Inhibition of TPH1 with a new class of drugs (here, TPT-001) has the potential to attenuate or even reverse severe PAH and associated RV dysfunction in vivo by blocking the serotonin pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JACC: Basic to Translational Science
JACC: Basic to Translational Science CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
14.20
自引率
1.00%
发文量
161
审稿时长
16 weeks
期刊介绍: JACC: Basic to Translational Science is an open access journal that is part of the renowned Journal of the American College of Cardiology (JACC). It focuses on advancing the field of Translational Cardiovascular Medicine and aims to accelerate the translation of new scientific discoveries into therapies that improve outcomes for patients with or at risk for Cardiovascular Disease. The journal covers thematic areas such as pre-clinical research, clinical trials, personalized medicine, novel drugs, devices, and biologics, proteomics, genomics, and metabolomics, as well as early phase clinical trial methodology.
期刊最新文献
Editorial Board Deubiquitinase USP25 Alleviates Obesity-Induced Cardiac Remodeling and Dysfunction by Downregulating TAK1 and Reducing TAK1-Mediated Inflammation Targeting USP25 in the Heart Non-Cell-Autonomous Cardiomyocyte Regulation Complicates Gene Supplementation Therapy for Lmna-Associated Cardiac Defects in Mice When Off-Target Is the Target
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1