El Mehdi Issouani , Patrice Bertail , Emmanuelle Gautherat
{"title":"正则化霍特林 Tn2 的指数边界</mml:","authors":"El Mehdi Issouani , Patrice Bertail , Emmanuelle Gautherat","doi":"10.1016/j.jmva.2024.105342","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain exponential inequalities for regularized Hotelling’s <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> statistics, that take into account the potential high dimensional aspects of the problem. We explore the finite sample properties of the tail of these statistics by deriving exponential bounds for symmetric distributions and also for general distributions under weak moment assumptions (we never assume exponential moments). For this, we use a penalized estimator of the covariance matrix and propose an optimal choice for the penalty coefficient.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"203 ","pages":"Article 105342"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X24000496/pdfft?md5=cd918fc00e938bad85311ad3c899e4a8&pid=1-s2.0-S0047259X24000496-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exponential bounds for regularized Hotelling’s T2 statistic in high dimension\",\"authors\":\"El Mehdi Issouani , Patrice Bertail , Emmanuelle Gautherat\",\"doi\":\"10.1016/j.jmva.2024.105342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain exponential inequalities for regularized Hotelling’s <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> statistics, that take into account the potential high dimensional aspects of the problem. We explore the finite sample properties of the tail of these statistics by deriving exponential bounds for symmetric distributions and also for general distributions under weak moment assumptions (we never assume exponential moments). For this, we use a penalized estimator of the covariance matrix and propose an optimal choice for the penalty coefficient.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"203 \",\"pages\":\"Article 105342\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000496/pdfft?md5=cd918fc00e938bad85311ad3c899e4a8&pid=1-s2.0-S0047259X24000496-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000496\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000496","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Exponential bounds for regularized Hotelling’s T2 statistic in high dimension
We obtain exponential inequalities for regularized Hotelling’s statistics, that take into account the potential high dimensional aspects of the problem. We explore the finite sample properties of the tail of these statistics by deriving exponential bounds for symmetric distributions and also for general distributions under weak moment assumptions (we never assume exponential moments). For this, we use a penalized estimator of the covariance matrix and propose an optimal choice for the penalty coefficient.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.