基于集合回归模型的 LAMOST DR10(v1.0)Am 和 Ap 候选样本

Hai-Feng 海峰 Yang 杨, Rui 瑞 Wang 王, Jiang-Hui 江辉 Cai 蔡, A-Li 阿理 Luo 罗, Bing 冰 Du 杜, Yan-Ting 艳婷 He 贺, Mei-Hong 美红 Su 苏, Chen-Hui 晨辉 Shi 史, Xu-Jun 旭俊 Zhao 赵, Ya-Ling 亚玲 Xun 荀, Yi-Nan 艺楠 Yuan 员
{"title":"基于集合回归模型的 LAMOST DR10(v1.0)Am 和 Ap 候选样本","authors":"Hai-Feng 海峰 Yang 杨, Rui 瑞 Wang 王, Jiang-Hui 江辉 Cai 蔡, A-Li 阿理 Luo 罗, Bing 冰 Du 杜, Yan-Ting 艳婷 He 贺, Mei-Hong 美红 Su 苏, Chen-Hui 晨辉 Shi 史, Xu-Jun 旭俊 Zhao 赵, Ya-Ling 亚玲 Xun 荀, Yi-Nan 艺楠 Yuan 员","doi":"10.3847/1538-4365/ad4107","DOIUrl":null,"url":null,"abstract":"Large samples of Am and Ap stars are helpful in studying the interplay between phenomena like atomic diffusion, magnetic fields, and stellar rotation in stellar astrophysics. Existing samples of Am and Ap stars, mostly obtained from spectral data with a signal-to-noise ratio in the g band (S/Ng) greater than 50, can benefit from expansion by exploring spectra with lower S/Ng. Therefore, this paper proposes an ensemble regression model applicable to spectra with a minimum S/Ng of 30. Using the model, we identify 21,361 Am candidates, of which 11,614 are new, and 6182 Ap candidates, of which 4978 are new, from LAMOST DR10. The Am sample size has increased by 60% and the Ap sample size has increased by 180% compared to the previous sample. In terms of effective temperature (T eff), the Am candidates range mainly from 6000 to 8500 K, while the Ap candidates range from 6000 to 11,700 K. The surface gravity ( logg ) distributions for Am and Ap candidates differ in the range of 3.25–4.75 dex. The number of Am candidates increases stepwise, in contrast to the relatively uniform distribution of Ap candidates across the entire surface gravity range. Regarding metallicity ([Fe/H]), Am candidates typically range from −0.75 to 0.38 dex, peaking near 0 dex, while Ap candidates are distributed from −1.38 to 0.38 dex, with a peak near −0.5 dex.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sample of Am and Ap Candidates from LAMOST DR10 (v1.0) Based on the Ensemble Regression Model\",\"authors\":\"Hai-Feng 海峰 Yang 杨, Rui 瑞 Wang 王, Jiang-Hui 江辉 Cai 蔡, A-Li 阿理 Luo 罗, Bing 冰 Du 杜, Yan-Ting 艳婷 He 贺, Mei-Hong 美红 Su 苏, Chen-Hui 晨辉 Shi 史, Xu-Jun 旭俊 Zhao 赵, Ya-Ling 亚玲 Xun 荀, Yi-Nan 艺楠 Yuan 员\",\"doi\":\"10.3847/1538-4365/ad4107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large samples of Am and Ap stars are helpful in studying the interplay between phenomena like atomic diffusion, magnetic fields, and stellar rotation in stellar astrophysics. Existing samples of Am and Ap stars, mostly obtained from spectral data with a signal-to-noise ratio in the g band (S/Ng) greater than 50, can benefit from expansion by exploring spectra with lower S/Ng. Therefore, this paper proposes an ensemble regression model applicable to spectra with a minimum S/Ng of 30. Using the model, we identify 21,361 Am candidates, of which 11,614 are new, and 6182 Ap candidates, of which 4978 are new, from LAMOST DR10. The Am sample size has increased by 60% and the Ap sample size has increased by 180% compared to the previous sample. In terms of effective temperature (T eff), the Am candidates range mainly from 6000 to 8500 K, while the Ap candidates range from 6000 to 11,700 K. The surface gravity ( logg ) distributions for Am and Ap candidates differ in the range of 3.25–4.75 dex. The number of Am candidates increases stepwise, in contrast to the relatively uniform distribution of Ap candidates across the entire surface gravity range. Regarding metallicity ([Fe/H]), Am candidates typically range from −0.75 to 0.38 dex, peaking near 0 dex, while Ap candidates are distributed from −1.38 to 0.38 dex, with a peak near −0.5 dex.\",\"PeriodicalId\":22368,\"journal\":{\"name\":\"The Astrophysical Journal Supplement Series\",\"volume\":\"3 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/ad4107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad4107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大量的Am和Ap恒星样本有助于研究恒星天体物理学中原子扩散、磁场和恒星旋转等现象之间的相互作用。现有的 Am 星和 Ap 星样本大多是从 g 波段信噪比(S/Ng)大于 50 的光谱数据中获得的。因此,本文提出了一个适用于最小信噪比为 30 的光谱的集合回归模型。利用该模型,我们从 LAMOST DR10 中识别出 21,361 个 Am 候选天体,其中 11,614 个是新天体;6182 个 Ap 候选天体,其中 4978 个是新天体。与之前的样本相比,Am 样本增加了 60%,Ap 样本增加了 180%。在有效温度(T eff)方面,Am候选星的范围主要在6000-8500 K之间,而Ap候选星的范围则在6000-11700 K之间。Am和Ap候选星的表面引力(logg)分布差异在3.25-4.75 dex之间。Am候选星的数量呈阶梯状增加,而Ap候选星则在整个表面引力范围内分布相对均匀。在金属性([Fe/H])方面,Am 候选星的典型分布范围为-0.75-0.38 dex,在 0 dex 附近达到峰值;而 Ap 候选星的分布范围为-1.38-0.38 dex,在-0.5 dex 附近达到峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Sample of Am and Ap Candidates from LAMOST DR10 (v1.0) Based on the Ensemble Regression Model
Large samples of Am and Ap stars are helpful in studying the interplay between phenomena like atomic diffusion, magnetic fields, and stellar rotation in stellar astrophysics. Existing samples of Am and Ap stars, mostly obtained from spectral data with a signal-to-noise ratio in the g band (S/Ng) greater than 50, can benefit from expansion by exploring spectra with lower S/Ng. Therefore, this paper proposes an ensemble regression model applicable to spectra with a minimum S/Ng of 30. Using the model, we identify 21,361 Am candidates, of which 11,614 are new, and 6182 Ap candidates, of which 4978 are new, from LAMOST DR10. The Am sample size has increased by 60% and the Ap sample size has increased by 180% compared to the previous sample. In terms of effective temperature (T eff), the Am candidates range mainly from 6000 to 8500 K, while the Ap candidates range from 6000 to 11,700 K. The surface gravity ( logg ) distributions for Am and Ap candidates differ in the range of 3.25–4.75 dex. The number of Am candidates increases stepwise, in contrast to the relatively uniform distribution of Ap candidates across the entire surface gravity range. Regarding metallicity ([Fe/H]), Am candidates typically range from −0.75 to 0.38 dex, peaking near 0 dex, while Ap candidates are distributed from −1.38 to 0.38 dex, with a peak near −0.5 dex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying Light-curve Signals with a Deep-learning-based Object Detection Algorithm. II. A General Light-curve Classification Framework Optical Variability of Gaia CRF3 Sources with Robust Statistics and the 5000 Most Variable Quasars Metrics of Astrometric Variability in the International Celestial Reference Frame. I. Statistical Analysis and Selection of the Most Variable Sources Forecast of Foreground Cleaning Strategies for AliCPT-1 Catalog of Proper Orbits for 1.25 Million Main-belt Asteroids and Discovery of 136 New Collisional Families
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1