{"title":"KBM 介导的与 KU80 的相互作用促进 CHO 细胞对 DNA 复制压力的抵抗力","authors":"Sophie E. Wells, Keith W. Caldecott","doi":"10.1016/j.dnarep.2024.103710","DOIUrl":null,"url":null,"abstract":"<div><p>The KU heterodimer (KU70/80) is rapidly recruited to DNA double-strand breaks (DSBs) to regulate their processing and repair. Previous work has revealed that the amino-terminal von Willebrand-like (vWA-like) domain in KU80 harbours a conserved hydrophobic pocket that interacts with a short peptide motif known as the Ku-binding motif (KBM). The KBM is present in a variety of DNA repair proteins such as APLF, CYREN, and Werner protein (WRN). Here, to investigate the importance of KBM-mediated protein-protein interactions for KU80 function, we employed KU80-deficient Chinese Hamster Ovary (Xrs-6) cells transfected with RFP-tagged wild-type human KU80 or KU80 harbouring a mutant vWA-like domain (KU80<sup>L68R</sup>). Surprisingly, while mutant RFP-KU80<sup>L68R</sup> largely or entirely restored NHEJ efficiency and radiation resistance in KU80-deficient <em>Xrs-6</em> cells, it failed to restore cellular resistance to DNA replication stress induced by camptothecin (CPT) or hydroxyurea (HU). Moreover, KU80-deficient Xrs-6 cells expressing RFP-KU80<sup>L68R</sup> accumulated pan-nuclear γH2AX in an S/G2-phase-dependent manner following treatment with CPT or HU, suggesting that the binding of KU80 to one or more KBM-containing proteins is required for the processing and/or repair of DNA ends that arise during DNA replication stress. Consistent with this idea, depletion of WRN helicase/exonuclease recapitulated the CPT-induced γH2AX phenotype, and did so epistatically with mutation of the KU80 vWA-like domain. These data identify a role for the KBM-binding by KU80 in the response and resistance of CHO cells to arrested and/or collapsed DNA replication forks, and implicate the KBM-mediated interaction of KU80 with WRN as a critical effector of this role.</p></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"140 ","pages":"Article 103710"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1568786424000867/pdfft?md5=c5d3c451037ee3da2b1171cdc1021890&pid=1-s2.0-S1568786424000867-main.pdf","citationCount":"0","resultStr":"{\"title\":\"KBM-mediated interactions with KU80 promote cellular resistance to DNA replication stress in CHO cells\",\"authors\":\"Sophie E. Wells, Keith W. Caldecott\",\"doi\":\"10.1016/j.dnarep.2024.103710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The KU heterodimer (KU70/80) is rapidly recruited to DNA double-strand breaks (DSBs) to regulate their processing and repair. Previous work has revealed that the amino-terminal von Willebrand-like (vWA-like) domain in KU80 harbours a conserved hydrophobic pocket that interacts with a short peptide motif known as the Ku-binding motif (KBM). The KBM is present in a variety of DNA repair proteins such as APLF, CYREN, and Werner protein (WRN). Here, to investigate the importance of KBM-mediated protein-protein interactions for KU80 function, we employed KU80-deficient Chinese Hamster Ovary (Xrs-6) cells transfected with RFP-tagged wild-type human KU80 or KU80 harbouring a mutant vWA-like domain (KU80<sup>L68R</sup>). Surprisingly, while mutant RFP-KU80<sup>L68R</sup> largely or entirely restored NHEJ efficiency and radiation resistance in KU80-deficient <em>Xrs-6</em> cells, it failed to restore cellular resistance to DNA replication stress induced by camptothecin (CPT) or hydroxyurea (HU). Moreover, KU80-deficient Xrs-6 cells expressing RFP-KU80<sup>L68R</sup> accumulated pan-nuclear γH2AX in an S/G2-phase-dependent manner following treatment with CPT or HU, suggesting that the binding of KU80 to one or more KBM-containing proteins is required for the processing and/or repair of DNA ends that arise during DNA replication stress. Consistent with this idea, depletion of WRN helicase/exonuclease recapitulated the CPT-induced γH2AX phenotype, and did so epistatically with mutation of the KU80 vWA-like domain. These data identify a role for the KBM-binding by KU80 in the response and resistance of CHO cells to arrested and/or collapsed DNA replication forks, and implicate the KBM-mediated interaction of KU80 with WRN as a critical effector of this role.</p></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"140 \",\"pages\":\"Article 103710\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1568786424000867/pdfft?md5=c5d3c451037ee3da2b1171cdc1021890&pid=1-s2.0-S1568786424000867-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786424000867\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424000867","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
KU 异源二聚体(KU70/80)被迅速招募到 DNA 双链断裂(DSB)处,以调节其处理和修复。先前的研究发现,KU80 氨基末端的 von Willebrand-like(vWA-like)结构域含有一个保守的疏水袋,可与一个称为 Ku 结合基序(KBM)的短肽基序相互作用。KBM存在于多种DNA修复蛋白中,如APLF、CYREN和Werner蛋白(WRN)。在这里,为了研究KBM介导的蛋白质-蛋白质相互作用对KU80功能的重要性,我们利用KU80缺陷的中国仓鼠卵巢(Xrs-6)细胞转染了RFP标记的野生型人KU80或携带突变vWA样结构域(KU80L68R)的KU80。令人惊讶的是,虽然突变体 RFP-KU80L68R 在很大程度上或完全恢复了 KU80 缺陷 Xrs-6 细胞的 NHEJ 效率和抗辐射能力,但它未能恢复细胞对喜树碱(CPT)或羟基脲(HU)诱导的 DNA 复制压力的抗性。此外,表达 RFP-KU80L68R 的 KU80 缺陷 Xrs-6 细胞在接受 CPT 或 HU 处理后,以 S/G2 期依赖性方式积累了泛核 γH2AX,这表明 KU80 与一种或多种含 KBM 蛋白结合是处理和/或修复 DNA 复制应激过程中出现的 DNA 末端所必需的。与这一观点一致的是,WRN螺旋酶/核酸外切酶的缺失重现了CPT诱导的γH2AX表型,并且与KU80 vWA样结构域的突变具有表观上的相似性。这些数据确定了KBM与KU80的结合在CHO细胞对停滞和/或崩溃的DNA复制叉的反应和抵抗中的作用,并表明KBM介导的KU80与WRN的相互作用是这一作用的关键效应因子。
KBM-mediated interactions with KU80 promote cellular resistance to DNA replication stress in CHO cells
The KU heterodimer (KU70/80) is rapidly recruited to DNA double-strand breaks (DSBs) to regulate their processing and repair. Previous work has revealed that the amino-terminal von Willebrand-like (vWA-like) domain in KU80 harbours a conserved hydrophobic pocket that interacts with a short peptide motif known as the Ku-binding motif (KBM). The KBM is present in a variety of DNA repair proteins such as APLF, CYREN, and Werner protein (WRN). Here, to investigate the importance of KBM-mediated protein-protein interactions for KU80 function, we employed KU80-deficient Chinese Hamster Ovary (Xrs-6) cells transfected with RFP-tagged wild-type human KU80 or KU80 harbouring a mutant vWA-like domain (KU80L68R). Surprisingly, while mutant RFP-KU80L68R largely or entirely restored NHEJ efficiency and radiation resistance in KU80-deficient Xrs-6 cells, it failed to restore cellular resistance to DNA replication stress induced by camptothecin (CPT) or hydroxyurea (HU). Moreover, KU80-deficient Xrs-6 cells expressing RFP-KU80L68R accumulated pan-nuclear γH2AX in an S/G2-phase-dependent manner following treatment with CPT or HU, suggesting that the binding of KU80 to one or more KBM-containing proteins is required for the processing and/or repair of DNA ends that arise during DNA replication stress. Consistent with this idea, depletion of WRN helicase/exonuclease recapitulated the CPT-induced γH2AX phenotype, and did so epistatically with mutation of the KU80 vWA-like domain. These data identify a role for the KBM-binding by KU80 in the response and resistance of CHO cells to arrested and/or collapsed DNA replication forks, and implicate the KBM-mediated interaction of KU80 with WRN as a critical effector of this role.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.