有助于确定磁暴对电力传输系统的影响

D. Mayer, Milan Stork
{"title":"有助于确定磁暴对电力传输系统的影响","authors":"D. Mayer, Milan Stork","doi":"10.2478/jee-2024-0027","DOIUrl":null,"url":null,"abstract":"Abstract When a magnetic storm hits a power transmission system, quasi-stationary geomagnetically induced currents (GIC) are generated in the high-voltage part of the system. These currents cause semi-saturation of the magnetic circuits of power transformers, which induces current overload in their high-voltage windings and subsequently thermal overload, which can lead to system failures. This rather complex phenomenon was described in [11] by a system of nonlinear differential equations and subsequently solved. This very challenging method is replaced in the present work by a simple approach. It allows not only predicting the imminent danger of system collapse, but gives transformer designers valuable information on how they can counteract this danger.","PeriodicalId":508697,"journal":{"name":"Journal of Electrical Engineering","volume":"10 1","pages":"224 - 228"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution to the determination of the effect of magnetic storms on the electric power transmission system\",\"authors\":\"D. Mayer, Milan Stork\",\"doi\":\"10.2478/jee-2024-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract When a magnetic storm hits a power transmission system, quasi-stationary geomagnetically induced currents (GIC) are generated in the high-voltage part of the system. These currents cause semi-saturation of the magnetic circuits of power transformers, which induces current overload in their high-voltage windings and subsequently thermal overload, which can lead to system failures. This rather complex phenomenon was described in [11] by a system of nonlinear differential equations and subsequently solved. This very challenging method is replaced in the present work by a simple approach. It allows not only predicting the imminent danger of system collapse, but gives transformer designers valuable information on how they can counteract this danger.\",\"PeriodicalId\":508697,\"journal\":{\"name\":\"Journal of Electrical Engineering\",\"volume\":\"10 1\",\"pages\":\"224 - 228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2024-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jee-2024-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 当磁暴袭击输电系统时,系统的高压部分会产生准静止地磁感应电流(GIC)。这些电流会导致电力变压器磁路半饱和,从而引起高压绕组电流过载,继而导致热过载,进而引发系统故障。文献 [11] 用非线性微分方程系统描述了这一相当复杂的现象,并随后进行了求解。本研究用一种简单的方法取代了这种极具挑战性的方法。它不仅能预测系统崩溃的紧迫危险,还能为变压器设计人员提供如何应对这一危险的宝贵信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contribution to the determination of the effect of magnetic storms on the electric power transmission system
Abstract When a magnetic storm hits a power transmission system, quasi-stationary geomagnetically induced currents (GIC) are generated in the high-voltage part of the system. These currents cause semi-saturation of the magnetic circuits of power transformers, which induces current overload in their high-voltage windings and subsequently thermal overload, which can lead to system failures. This rather complex phenomenon was described in [11] by a system of nonlinear differential equations and subsequently solved. This very challenging method is replaced in the present work by a simple approach. It allows not only predicting the imminent danger of system collapse, but gives transformer designers valuable information on how they can counteract this danger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Area and energy optimized Hamming encoder and decoder for nano-communication High-performance MTM inspired two-port MIMO antenna structure for 5G/IoT applications Contribution to the determination of the effect of magnetic storms on the electric power transmission system Exploring and mitigating hybrid rank attack in RPL-based IoT networks Mutually coupled dual-stage RC feedback LNA for RF applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1