利用关键基础设施信息安全管理系统中的人工智能模型,开发一种按勒索软件类型调查网络犯罪的方法

A. Partyka, O. Harasymchuk, E. Nyemkova, Y. Sovyn, V. Dudykevych
{"title":"利用关键基础设施信息安全管理系统中的人工智能模型,开发一种按勒索软件类型调查网络犯罪的方法","authors":"A. Partyka, O. Harasymchuk, E. Nyemkova, Y. Sovyn, V. Dudykevych","doi":"10.23939/csn2024.01.015","DOIUrl":null,"url":null,"abstract":"In this article the authors focused on analyzing the possibilities of using artificial intelligence models for effective detection and analysis of cybercrimes. A comprehensive method using artificial intelligence algorithms such as Random Forest and Isolation Forest algorithms is developed and described to detect ransomware which is one of the main threats to information security management systems (ISMS) in the field of critical infrastructure. The result of the study is the determination of the compatibility of such methods with the requirements of ISO 27001:2022 emphasizing the importance of integrating innovative AI technologies into already existing security systems. In addition the article analyzes the potential advantages of such integration including compliance with the requirements of international information security frameworks. Keywords: Isolation Forest Random Forest critical infrastructure information security management system ISO 27001 cyber security cyber security standard cybercrime ISMS ransomware siem edr security monitoring antivirus machine learning computer networks information systems.","PeriodicalId":504130,"journal":{"name":"Computer systems and network","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEVELOPMENT OF A METHOD FOR INVESTIGATING CYBERCRIMES BY THE TYPE OF RANSOMWARE USING ARTIFICIAL INTELLIGENCE MODELS IN THE INFORMATION SECURITY MANAGEMENT SYSTEM OF CRITICAL INFRASTRUCTURE\",\"authors\":\"A. Partyka, O. Harasymchuk, E. Nyemkova, Y. Sovyn, V. Dudykevych\",\"doi\":\"10.23939/csn2024.01.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article the authors focused on analyzing the possibilities of using artificial intelligence models for effective detection and analysis of cybercrimes. A comprehensive method using artificial intelligence algorithms such as Random Forest and Isolation Forest algorithms is developed and described to detect ransomware which is one of the main threats to information security management systems (ISMS) in the field of critical infrastructure. The result of the study is the determination of the compatibility of such methods with the requirements of ISO 27001:2022 emphasizing the importance of integrating innovative AI technologies into already existing security systems. In addition the article analyzes the potential advantages of such integration including compliance with the requirements of international information security frameworks. Keywords: Isolation Forest Random Forest critical infrastructure information security management system ISO 27001 cyber security cyber security standard cybercrime ISMS ransomware siem edr security monitoring antivirus machine learning computer networks information systems.\",\"PeriodicalId\":504130,\"journal\":{\"name\":\"Computer systems and network\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer systems and network\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/csn2024.01.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer systems and network","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/csn2024.01.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,作者重点分析了使用人工智能模型有效检测和分析网络犯罪的可能性。作者开发并描述了一种使用随机森林算法和隔离森林算法等人工智能算法的综合方法,用于检测勒索软件,勒索软件是关键基础设施领域信息安全管理系统(ISMS)面临的主要威胁之一。研究结果确定了这些方法与 ISO 27001:2022 要求的兼容性,强调了将创新人工智能技术集成到现有安全系统中的重要性。此外,文章还分析了这种整合的潜在优势,包括符合国际信息安全框架的要求。关键词隔离林 随机林 关键基础设施 信息安全管理系统 ISO 27001 网络安全 网络安全标准 网络犯罪 ISMS 勒索软件 siem edr 安全监控 反病毒 机器学习 计算机网络 信息系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DEVELOPMENT OF A METHOD FOR INVESTIGATING CYBERCRIMES BY THE TYPE OF RANSOMWARE USING ARTIFICIAL INTELLIGENCE MODELS IN THE INFORMATION SECURITY MANAGEMENT SYSTEM OF CRITICAL INFRASTRUCTURE
In this article the authors focused on analyzing the possibilities of using artificial intelligence models for effective detection and analysis of cybercrimes. A comprehensive method using artificial intelligence algorithms such as Random Forest and Isolation Forest algorithms is developed and described to detect ransomware which is one of the main threats to information security management systems (ISMS) in the field of critical infrastructure. The result of the study is the determination of the compatibility of such methods with the requirements of ISO 27001:2022 emphasizing the importance of integrating innovative AI technologies into already existing security systems. In addition the article analyzes the potential advantages of such integration including compliance with the requirements of international information security frameworks. Keywords: Isolation Forest Random Forest critical infrastructure information security management system ISO 27001 cyber security cyber security standard cybercrime ISMS ransomware siem edr security monitoring antivirus machine learning computer networks information systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
METHODS AND MEANS OF ENSURING STABILITY AND PROTECTION OF RADIO COMMUNICATIONS IN A COMPLEX ELECTROMAGNETIC ENVIRONMENT RESEARCH AND IMPROVEMENT OF COMPUTING ALGORITHMS FOR CALCULATING THE TRIGONOMETRICAL COEFFICIENTS OF THE HASHING ALGORITHM MD5 UTILIZATION OF VOICE EMBEDDINGS IN INTEGRATED SYSTEMS FOR SPEAKER DIARIZATION AND MALICIOUS ACTOR DETECTION IMPROVEMENT THE SECURITY OF THE ENTERPRISE’S NETWORK INFRASTRUCTURE IN CONDITIONS OF MODERN CHALLENGES AND LIMITED RESOURCES OVERVIEW OF THE CIS BENCHMARKS USAGE FOR FULFILLING THE REQUIREMENTS FROM INTERNATIONAL STANDARD ISO/IEC 27001:2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1