分数导数在图像质量评估指数中的应用

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Applied Numerical Mathematics Pub Date : 2024-06-07 DOI:10.1016/j.apnum.2024.06.005
Mariusz Frackiewicz, Henryk Palus
{"title":"分数导数在图像质量评估指数中的应用","authors":"Mariusz Frackiewicz,&nbsp;Henryk Palus","doi":"10.1016/j.apnum.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Objective image quality assessment involves the use of mathematical models to quantitatively describe image quality. FR-IQA (Full-Reference Image Quality Assessment) methods using reference images are also often used to evaluate image processing and computer vision algorithms. Quality indices often use gradient operators to express relevant visual information, such as edges. Fractional calculus has been applied in the last two decades in various fields such as signal processing, image processing, and pattern recognition. Fractional derivatives are generalizations of integer-order derivatives and can be computed using various operators such as the Riemann-Liouville, Caputo-Fabrizio, and Grünwald-Letnikov operators. In this paper, we propose a modification of the FSIMc image quality index by including fractional derivatives to extract and enhance edges. A study of the usefulness of fractional derivative in the FSIMc model was conducted by assessing Pearson, Spearman and Kendall correlations with MOS scores for images from the TID2013 and KADID-10k databases. Comparison of FD_FSIMc with the classic FSIMc shows an increase of several percent in the correlation coefficients for the modified index. The results obtained are superior to those other known approaches to FR-IQA that use fractional derivatives. The results encourage the use of fractional calculus.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 101-110"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001442/pdfft?md5=c5b941ec0099c65d784aced80ddf399e&pid=1-s2.0-S0168927424001442-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of fractional derivatives in image quality assessment indices\",\"authors\":\"Mariusz Frackiewicz,&nbsp;Henryk Palus\",\"doi\":\"10.1016/j.apnum.2024.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Objective image quality assessment involves the use of mathematical models to quantitatively describe image quality. FR-IQA (Full-Reference Image Quality Assessment) methods using reference images are also often used to evaluate image processing and computer vision algorithms. Quality indices often use gradient operators to express relevant visual information, such as edges. Fractional calculus has been applied in the last two decades in various fields such as signal processing, image processing, and pattern recognition. Fractional derivatives are generalizations of integer-order derivatives and can be computed using various operators such as the Riemann-Liouville, Caputo-Fabrizio, and Grünwald-Letnikov operators. In this paper, we propose a modification of the FSIMc image quality index by including fractional derivatives to extract and enhance edges. A study of the usefulness of fractional derivative in the FSIMc model was conducted by assessing Pearson, Spearman and Kendall correlations with MOS scores for images from the TID2013 and KADID-10k databases. Comparison of FD_FSIMc with the classic FSIMc shows an increase of several percent in the correlation coefficients for the modified index. The results obtained are superior to those other known approaches to FR-IQA that use fractional derivatives. The results encourage the use of fractional calculus.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"204 \",\"pages\":\"Pages 101-110\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001442/pdfft?md5=c5b941ec0099c65d784aced80ddf399e&pid=1-s2.0-S0168927424001442-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001442\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001442","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

客观图像质量评估涉及使用数学模型来定量描述图像质量。使用参考图像的 FR-IQA(全参考图像质量评估)方法也经常用于评估图像处理和计算机视觉算法。质量指数通常使用梯度算子来表达相关的视觉信息,如边缘。过去二十年来,分数微积分已被应用于信号处理、图像处理和模式识别等多个领域。分数导数是整数阶导数的一般化,可以使用各种算子进行计算,如黎曼-黎奥维尔算子、卡普托-法布里齐奥算子和格伦沃尔德-莱特尼科夫算子。在本文中,我们建议对 FSIMc 图像质量指数进行修改,加入分数导数来提取和增强边缘。通过评估 TID2013 和 KADID-10k 数据库图像中分数导数与 MOS 分数的皮尔逊、斯皮尔曼和肯德尔相关性,研究了分数导数在 FSIMc 模型中的实用性。将 FD_FSIMc 与经典的 FSIMc 进行比较后发现,修正指数的相关系数提高了几个百分点。获得的结果优于使用分数导数的其他已知 FR-IQA 方法。这些结果鼓励使用分数微积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of fractional derivatives in image quality assessment indices

Objective image quality assessment involves the use of mathematical models to quantitatively describe image quality. FR-IQA (Full-Reference Image Quality Assessment) methods using reference images are also often used to evaluate image processing and computer vision algorithms. Quality indices often use gradient operators to express relevant visual information, such as edges. Fractional calculus has been applied in the last two decades in various fields such as signal processing, image processing, and pattern recognition. Fractional derivatives are generalizations of integer-order derivatives and can be computed using various operators such as the Riemann-Liouville, Caputo-Fabrizio, and Grünwald-Letnikov operators. In this paper, we propose a modification of the FSIMc image quality index by including fractional derivatives to extract and enhance edges. A study of the usefulness of fractional derivative in the FSIMc model was conducted by assessing Pearson, Spearman and Kendall correlations with MOS scores for images from the TID2013 and KADID-10k databases. Comparison of FD_FSIMc with the classic FSIMc shows an increase of several percent in the correlation coefficients for the modified index. The results obtained are superior to those other known approaches to FR-IQA that use fractional derivatives. The results encourage the use of fractional calculus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
期刊最新文献
An adaptive DtN-FEM for the scattering problem from orthotropic media New adaptive low-dissipation central-upwind schemes A priori error estimates for a coseismic slip optimal control problem A local discontinuous Galerkin methods with local Lax-Friedrichs flux and modified central flux for one dimensional nonlinear convection-diffusion equation Mixed finite elements of higher-order in elastoplasticity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1