推进精准发酵:通过机理建模最大限度降低工业规模生物反应器的动力需求

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-06-11 DOI:10.1016/j.compchemeng.2024.108755
Ali Jahanian , Jerome Ramirez , Ian O'Hara
{"title":"推进精准发酵:通过机理建模最大限度降低工业规模生物反应器的动力需求","authors":"Ali Jahanian ,&nbsp;Jerome Ramirez ,&nbsp;Ian O'Hara","doi":"10.1016/j.compchemeng.2024.108755","DOIUrl":null,"url":null,"abstract":"<div><p>Minimizing power consumption in large-scale aerobic fermentation is essential for cost-effective operations. A mechanistic model of aerobic precision fermentation was developed integrating microbial growth parameters, thermodynamic data, and bioreactor properties. Results showed that agitation power dominated energy consumption at low oxygen transfer rates (<span><math><mrow><mi>O</mi><mi>T</mi><mi>R</mi></mrow></math></span>), shifting to aeration power (70 % of total) at high cell growth rates. In high <span><math><mrow><mi>O</mi><mi>T</mi><mi>R</mi><mi>s</mi></mrow></math></span>, mixing time reduced to 60 s from an initial value of 211 s. Scale-up from 5 m³ to 100 m³ decreased total specific power by 88 %. Operating at elevated headspace pressure lowered agitation speed, reducing total power consumption at high <span><math><mrow><mi>O</mi><mi>T</mi><mi>R</mi></mrow></math></span>. Impeller to bioreactor diameter ratio impacted the required agitation speed without significantly altering total power demand. Experimental data in a 100 L case study indicated a 0.43 kW.m⁻³ average power requirement across a 96-hour fermentation period. Our model demonstrates effective strategies for minimization of power consumption in industrial-scale aerobic fermentations.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009813542400173X/pdfft?md5=68e9b0fbc2e0292a4d713de3f0125f1c&pid=1-s2.0-S009813542400173X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Advancing precision fermentation: Minimizing power demand of industrial scale bioreactors through mechanistic modelling\",\"authors\":\"Ali Jahanian ,&nbsp;Jerome Ramirez ,&nbsp;Ian O'Hara\",\"doi\":\"10.1016/j.compchemeng.2024.108755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Minimizing power consumption in large-scale aerobic fermentation is essential for cost-effective operations. A mechanistic model of aerobic precision fermentation was developed integrating microbial growth parameters, thermodynamic data, and bioreactor properties. Results showed that agitation power dominated energy consumption at low oxygen transfer rates (<span><math><mrow><mi>O</mi><mi>T</mi><mi>R</mi></mrow></math></span>), shifting to aeration power (70 % of total) at high cell growth rates. In high <span><math><mrow><mi>O</mi><mi>T</mi><mi>R</mi><mi>s</mi></mrow></math></span>, mixing time reduced to 60 s from an initial value of 211 s. Scale-up from 5 m³ to 100 m³ decreased total specific power by 88 %. Operating at elevated headspace pressure lowered agitation speed, reducing total power consumption at high <span><math><mrow><mi>O</mi><mi>T</mi><mi>R</mi></mrow></math></span>. Impeller to bioreactor diameter ratio impacted the required agitation speed without significantly altering total power demand. Experimental data in a 100 L case study indicated a 0.43 kW.m⁻³ average power requirement across a 96-hour fermentation period. Our model demonstrates effective strategies for minimization of power consumption in industrial-scale aerobic fermentations.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S009813542400173X/pdfft?md5=68e9b0fbc2e0292a4d713de3f0125f1c&pid=1-s2.0-S009813542400173X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009813542400173X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542400173X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在大规模好氧发酵过程中,最大限度地降低能耗对实现经济高效的运行至关重要。我们开发了一个好氧精密发酵的机理模型,整合了微生物生长参数、热力学数据和生物反应器特性。结果表明,在低氧转移率(OTR)条件下,搅拌功率在能耗中占主导地位,而在高细胞生长率条件下,则转变为曝气功率(占总能耗的 70%)。在高氧转移率条件下,搅拌时间从最初的 211 秒缩短到 60 秒。在较高的顶空压力下运行可降低搅拌速度,从而减少高 OTR 时的总功率消耗。叶轮与生物反应器的直径比会影响所需的搅拌速度,但不会显著改变总功率需求。100 升案例研究的实验数据表明,96 小时发酵期的平均功率需求为 0.43 kW.m-³。我们的模型展示了在工业规模好氧发酵过程中最大限度降低能耗的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing precision fermentation: Minimizing power demand of industrial scale bioreactors through mechanistic modelling

Minimizing power consumption in large-scale aerobic fermentation is essential for cost-effective operations. A mechanistic model of aerobic precision fermentation was developed integrating microbial growth parameters, thermodynamic data, and bioreactor properties. Results showed that agitation power dominated energy consumption at low oxygen transfer rates (OTR), shifting to aeration power (70 % of total) at high cell growth rates. In high OTRs, mixing time reduced to 60 s from an initial value of 211 s. Scale-up from 5 m³ to 100 m³ decreased total specific power by 88 %. Operating at elevated headspace pressure lowered agitation speed, reducing total power consumption at high OTR. Impeller to bioreactor diameter ratio impacted the required agitation speed without significantly altering total power demand. Experimental data in a 100 L case study indicated a 0.43 kW.m⁻³ average power requirement across a 96-hour fermentation period. Our model demonstrates effective strategies for minimization of power consumption in industrial-scale aerobic fermentations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Rapid design of combination antimicrobial therapy against Acinetobacter baumannii A tray-by-tray method for the conceptual design of dividing wall columns A comprehensive modeling, analysis, and optimization of two phase, non–isobaric, and non–isothermal PEM fuel cell Scale up analysis of a plasmon-enhanced ethylene oxide production process Integrated risk management and maintenance planning in Oil and Gas Supply Chain operations under market uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1