{"title":"利用鱼卵漂移模型再现美国俄亥俄州桑达斯基河下游草鱼鱼卵样本的年龄变异性","authors":"","doi":"10.1016/j.jglr.2024.102376","DOIUrl":null,"url":null,"abstract":"<div><p>Invasive grass carp (<em>Ctenopharyngodon idella</em>) are currently reproducing in several tributaries to Lake Erie and threatening the Great Lakes ecosystem and fisheries. Grass carp are pelagic river spawners whose fertilized eggs drift downstream from the spawning site, developing as they drift. Variability in spawning time and location together with nonuniform velocities in natural rivers leads to egg age variability in field samples at downstream sampling sites. In this study, the Fluvial Egg Drift Simulator (FluEgg) model was used to simulate the transport of grass carp eggs collected in 12 samples at 9 sites in the lower Sandusky River (Ohio, USA) on July 12, 2017, to replicate the observed variability in egg-age distributions present in field samples. The variability in egg ages in virtual samples compare well to field samples. The most plausible explanations for differences between virtual and field samples are the existence of multiple spawning locations, including a spawning area approximately 8 km upstream from the river mouth, and idealized flow fields derived from a one-dimensional hydraulic model. Despite multiple sources of uncertainty and the deficiency in prescribing detailed spawning activities in the simulations, the results validate the utility of FluEgg together with ichthyoplankton data to identify plausible spawning areas and interpret age variability in field samples. A comprehensive discussion of model limitations and ichthyoplankton sample interpretation provides guidance for those using drift models to inform management actions for control of invasive carp in North America and to protect and restore carp populations in their native range in Asia.</p></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"50 4","pages":"Article 102376"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0380133024001266/pdfft?md5=c3bde3eedf5b14992fd3d91a59231579&pid=1-s2.0-S0380133024001266-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reproducing age variability in grass carp egg samples from the lower Sandusky River, Ohio, USA, using an egg-drift model\",\"authors\":\"\",\"doi\":\"10.1016/j.jglr.2024.102376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Invasive grass carp (<em>Ctenopharyngodon idella</em>) are currently reproducing in several tributaries to Lake Erie and threatening the Great Lakes ecosystem and fisheries. Grass carp are pelagic river spawners whose fertilized eggs drift downstream from the spawning site, developing as they drift. Variability in spawning time and location together with nonuniform velocities in natural rivers leads to egg age variability in field samples at downstream sampling sites. In this study, the Fluvial Egg Drift Simulator (FluEgg) model was used to simulate the transport of grass carp eggs collected in 12 samples at 9 sites in the lower Sandusky River (Ohio, USA) on July 12, 2017, to replicate the observed variability in egg-age distributions present in field samples. The variability in egg ages in virtual samples compare well to field samples. The most plausible explanations for differences between virtual and field samples are the existence of multiple spawning locations, including a spawning area approximately 8 km upstream from the river mouth, and idealized flow fields derived from a one-dimensional hydraulic model. Despite multiple sources of uncertainty and the deficiency in prescribing detailed spawning activities in the simulations, the results validate the utility of FluEgg together with ichthyoplankton data to identify plausible spawning areas and interpret age variability in field samples. A comprehensive discussion of model limitations and ichthyoplankton sample interpretation provides guidance for those using drift models to inform management actions for control of invasive carp in North America and to protect and restore carp populations in their native range in Asia.</p></div>\",\"PeriodicalId\":54818,\"journal\":{\"name\":\"Journal of Great Lakes Research\",\"volume\":\"50 4\",\"pages\":\"Article 102376\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0380133024001266/pdfft?md5=c3bde3eedf5b14992fd3d91a59231579&pid=1-s2.0-S0380133024001266-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Great Lakes Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0380133024001266\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024001266","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Reproducing age variability in grass carp egg samples from the lower Sandusky River, Ohio, USA, using an egg-drift model
Invasive grass carp (Ctenopharyngodon idella) are currently reproducing in several tributaries to Lake Erie and threatening the Great Lakes ecosystem and fisheries. Grass carp are pelagic river spawners whose fertilized eggs drift downstream from the spawning site, developing as they drift. Variability in spawning time and location together with nonuniform velocities in natural rivers leads to egg age variability in field samples at downstream sampling sites. In this study, the Fluvial Egg Drift Simulator (FluEgg) model was used to simulate the transport of grass carp eggs collected in 12 samples at 9 sites in the lower Sandusky River (Ohio, USA) on July 12, 2017, to replicate the observed variability in egg-age distributions present in field samples. The variability in egg ages in virtual samples compare well to field samples. The most plausible explanations for differences between virtual and field samples are the existence of multiple spawning locations, including a spawning area approximately 8 km upstream from the river mouth, and idealized flow fields derived from a one-dimensional hydraulic model. Despite multiple sources of uncertainty and the deficiency in prescribing detailed spawning activities in the simulations, the results validate the utility of FluEgg together with ichthyoplankton data to identify plausible spawning areas and interpret age variability in field samples. A comprehensive discussion of model limitations and ichthyoplankton sample interpretation provides guidance for those using drift models to inform management actions for control of invasive carp in North America and to protect and restore carp populations in their native range in Asia.
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.