{"title":"演示对电动汽车充电基础设施的拒绝充电攻击及其后果","authors":"Kirti Gupta , Bijaya Ketan Panigrahi , Anupam Joshi , Kolin Paul","doi":"10.1016/j.ijcip.2024.100693","DOIUrl":null,"url":null,"abstract":"<div><p>The recent upsurge in electric vehicle (EV) adoption has led to greener mobility but has also broadened the attack surface due to the increased interconnection between the entities like EV, EV charger, grid etc. We show in this paper that among these entities, the EV charger provides a possible attack surface through the available communication network. Adversaries at a minimum can disrupt the vehicular charging process known as denial of charging (DoC) attack. This attack is demonstrated on the real hardware setup of an EV charging, where we have considered the Bharat EV DC charging standard (BEVC-DC001) adopted by India which uses the controller area network (CAN) bus to communicate between EV charger and EV. The DoC attack can have significant consequences both on the electrical grid as well as individuals. The EV chargers (with connected EV) collectively serve as a large load demand, whose sudden inaccessibility would disrupt the supply–demand balance, triggering over frequency relays to either cause local or national blackout. Such a scenario is presented in this work on a microgrid (MG), in a real-time OPAL-RT environment. Not only can this attack lead to major transportation related problems but would also disrupt medical and emergency services.</p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"46 ","pages":"Article 100693"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of denial of charging attack on electric vehicle charging infrastructure and its consequences\",\"authors\":\"Kirti Gupta , Bijaya Ketan Panigrahi , Anupam Joshi , Kolin Paul\",\"doi\":\"10.1016/j.ijcip.2024.100693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent upsurge in electric vehicle (EV) adoption has led to greener mobility but has also broadened the attack surface due to the increased interconnection between the entities like EV, EV charger, grid etc. We show in this paper that among these entities, the EV charger provides a possible attack surface through the available communication network. Adversaries at a minimum can disrupt the vehicular charging process known as denial of charging (DoC) attack. This attack is demonstrated on the real hardware setup of an EV charging, where we have considered the Bharat EV DC charging standard (BEVC-DC001) adopted by India which uses the controller area network (CAN) bus to communicate between EV charger and EV. The DoC attack can have significant consequences both on the electrical grid as well as individuals. The EV chargers (with connected EV) collectively serve as a large load demand, whose sudden inaccessibility would disrupt the supply–demand balance, triggering over frequency relays to either cause local or national blackout. Such a scenario is presented in this work on a microgrid (MG), in a real-time OPAL-RT environment. Not only can this attack lead to major transportation related problems but would also disrupt medical and emergency services.</p></div>\",\"PeriodicalId\":49057,\"journal\":{\"name\":\"International Journal of Critical Infrastructure Protection\",\"volume\":\"46 \",\"pages\":\"Article 100693\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Critical Infrastructure Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874548224000349\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548224000349","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Demonstration of denial of charging attack on electric vehicle charging infrastructure and its consequences
The recent upsurge in electric vehicle (EV) adoption has led to greener mobility but has also broadened the attack surface due to the increased interconnection between the entities like EV, EV charger, grid etc. We show in this paper that among these entities, the EV charger provides a possible attack surface through the available communication network. Adversaries at a minimum can disrupt the vehicular charging process known as denial of charging (DoC) attack. This attack is demonstrated on the real hardware setup of an EV charging, where we have considered the Bharat EV DC charging standard (BEVC-DC001) adopted by India which uses the controller area network (CAN) bus to communicate between EV charger and EV. The DoC attack can have significant consequences both on the electrical grid as well as individuals. The EV chargers (with connected EV) collectively serve as a large load demand, whose sudden inaccessibility would disrupt the supply–demand balance, triggering over frequency relays to either cause local or national blackout. Such a scenario is presented in this work on a microgrid (MG), in a real-time OPAL-RT environment. Not only can this attack lead to major transportation related problems but would also disrupt medical and emergency services.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.