评估无衍生化凝胶渗透色谱法测定木质素分子量偏差的多技术互补法

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-06-18 DOI:10.1021/acs.analchem.4c01187
Daniel Papp, Göran Carlström, Tommy Nylander, Margareta Sandahl and Charlotta Turner*, 
{"title":"评估无衍生化凝胶渗透色谱法测定木质素分子量偏差的多技术互补法","authors":"Daniel Papp,&nbsp;Göran Carlström,&nbsp;Tommy Nylander,&nbsp;Margareta Sandahl and Charlotta Turner*,&nbsp;","doi":"10.1021/acs.analchem.4c01187","DOIUrl":null,"url":null,"abstract":"<p >The growing interest in lignin valorization in the past decades calls for analytical techniques for lignin characterization, ranging from wet chemistry techniques to highly sophisticated chromatographic and spectroscopic methods. One of the key parameters to consider is the molecular weight profile of lignin, which is routinely determined by size-exclusion chromatography; however, this is by no means straightforward and is prone to being hampered by considerable errors. Our study expands the fundamental understanding of the bias-inducing mechanisms in gel permeation chromatography (GPC), the magnitude of error originating from using polystyrene standards for mass calibration, and an evaluation of the effects of the solvent and type of lignin on the observed bias. The developed partial least-squares (PLS) regression model for lignin-related monomers revealed that lignin is prone to association mainly via hydrogen bonding. This hypothesis was supported by functional group-based analysis of the bias as well as pulse field gradient (pfg) diffusion NMR spectroscopy of model compounds in THF-<i>d</i><sub>8</sub>. Furthermore, although the lack of standards hindered drawing conclusions based on functionalities, direct infusion electrospray ionization mass spectrometry indicated that the relative bias decreases considerably for higher molecular weight species. The results from pfg-diffusion NMR spectroscopy on whole lignin samples were comparable when the same solvents were used in both experiments; in addition, the comparison between results obtained by pfg-diffusion NMR in different solvents gives some additional insights into the aggregation.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.4c01187","citationCount":"0","resultStr":"{\"title\":\"A Complementary Multitechnique Approach to Assess the Bias in Molecular Weight Determination of Lignin by Derivatization-Free Gel Permeation Chromatography\",\"authors\":\"Daniel Papp,&nbsp;Göran Carlström,&nbsp;Tommy Nylander,&nbsp;Margareta Sandahl and Charlotta Turner*,&nbsp;\",\"doi\":\"10.1021/acs.analchem.4c01187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The growing interest in lignin valorization in the past decades calls for analytical techniques for lignin characterization, ranging from wet chemistry techniques to highly sophisticated chromatographic and spectroscopic methods. One of the key parameters to consider is the molecular weight profile of lignin, which is routinely determined by size-exclusion chromatography; however, this is by no means straightforward and is prone to being hampered by considerable errors. Our study expands the fundamental understanding of the bias-inducing mechanisms in gel permeation chromatography (GPC), the magnitude of error originating from using polystyrene standards for mass calibration, and an evaluation of the effects of the solvent and type of lignin on the observed bias. The developed partial least-squares (PLS) regression model for lignin-related monomers revealed that lignin is prone to association mainly via hydrogen bonding. This hypothesis was supported by functional group-based analysis of the bias as well as pulse field gradient (pfg) diffusion NMR spectroscopy of model compounds in THF-<i>d</i><sub>8</sub>. Furthermore, although the lack of standards hindered drawing conclusions based on functionalities, direct infusion electrospray ionization mass spectrometry indicated that the relative bias decreases considerably for higher molecular weight species. The results from pfg-diffusion NMR spectroscopy on whole lignin samples were comparable when the same solvents were used in both experiments; in addition, the comparison between results obtained by pfg-diffusion NMR in different solvents gives some additional insights into the aggregation.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.analchem.4c01187\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c01187\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c01187","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,人们对木质素价值化的兴趣与日俱增,这就要求采用各种分析技术对木质素进行表征,包括从湿化学技术到高度复杂的色谱和光谱方法。木质素的分子量分布是需要考虑的关键参数之一,通常采用尺寸排阻色谱法进行测定。我们的研究拓展了对凝胶渗透色谱法(GPC)偏差诱导机制、使用聚苯乙烯标准进行质量校准产生的误差大小以及溶剂和木质素类型对观察到的偏差的影响的基本认识。针对木质素相关单体开发的偏最小二乘(PLS)回归模型显示,木质素主要通过氢键容易发生结合。基于官能团的偏差分析以及 THF-d8 中模型化合物的脉冲场梯度(pfg)扩散 NMR 光谱分析都支持这一假设。此外,虽然由于缺乏标准而无法根据官能团得出结论,但直接导流电喷雾电离质谱分析表明,对于分子量较高的物质,相对偏差会大大减小。在两次实验中使用相同溶剂时,对整个木质素样品进行 pfg 扩散 NMR 光谱分析的结果具有可比性;此外,在不同溶剂中通过 pfg 扩散 NMR 得到的结果之间的比较也为聚合提供了一些额外的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Complementary Multitechnique Approach to Assess the Bias in Molecular Weight Determination of Lignin by Derivatization-Free Gel Permeation Chromatography

The growing interest in lignin valorization in the past decades calls for analytical techniques for lignin characterization, ranging from wet chemistry techniques to highly sophisticated chromatographic and spectroscopic methods. One of the key parameters to consider is the molecular weight profile of lignin, which is routinely determined by size-exclusion chromatography; however, this is by no means straightforward and is prone to being hampered by considerable errors. Our study expands the fundamental understanding of the bias-inducing mechanisms in gel permeation chromatography (GPC), the magnitude of error originating from using polystyrene standards for mass calibration, and an evaluation of the effects of the solvent and type of lignin on the observed bias. The developed partial least-squares (PLS) regression model for lignin-related monomers revealed that lignin is prone to association mainly via hydrogen bonding. This hypothesis was supported by functional group-based analysis of the bias as well as pulse field gradient (pfg) diffusion NMR spectroscopy of model compounds in THF-d8. Furthermore, although the lack of standards hindered drawing conclusions based on functionalities, direct infusion electrospray ionization mass spectrometry indicated that the relative bias decreases considerably for higher molecular weight species. The results from pfg-diffusion NMR spectroscopy on whole lignin samples were comparable when the same solvents were used in both experiments; in addition, the comparison between results obtained by pfg-diffusion NMR in different solvents gives some additional insights into the aggregation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
A Dual-Modal, Label-Free Raman Imaging Method for Rapid Virtual Staining of Large-Area Breast Cancer Tissue Sections. A Dual-Recognition Fluorescence Enzyme-Linked Immunosorbent Assay for Specific Detection of Intact Lipid Nanoparticles via a Localized Scaffolding Autocatalytic DNA Circuit Amplifier. Data Fusion of Acoustic and Optical Emission from Laser-Induced Plasma for In Situ Measurement of Rare Earth Elements in Molten LiCl-KCl. Data-Independent Acquisition Represents a Promising Alternative for Fast Photochemical Oxidation of Proteins (FPOP) Samples Analysis. Fe(III)-Based Fluorescent Probe for High-Performance Recognition, Test Strip Analysis, and Cell Imaging of Carbon Monoxide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1