基于三维垂直无结环栅晶体管的逻辑门与可靠的多级触点工程。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-06-17 DOI:10.1021/acs.nanolett.3c04180
Abhishek Kumar, Jonas Müller, Sylvain Pelloquin, Aurélie Lecestre and Guilhem Larrieu*, 
{"title":"基于三维垂直无结环栅晶体管的逻辑门与可靠的多级触点工程。","authors":"Abhishek Kumar,&nbsp;Jonas Müller,&nbsp;Sylvain Pelloquin,&nbsp;Aurélie Lecestre and Guilhem Larrieu*,&nbsp;","doi":"10.1021/acs.nanolett.3c04180","DOIUrl":null,"url":null,"abstract":"<p >Vertical gate-all-around (V-GAA) represents the ultimate configuration in the forthcoming transistor industry, but it still encounters challenges in the semiconductor community. This paper introduces, for the first time, a dual-input logic gate circuit achieved using 3D vertical transistors with nanoscale sub-20-nm GAA, employing a novel technique for creating contacts and patterning metallic lines at the bottom level without the conventional lift-off process. This involves a two-step oxidation process: patterning the first field oxide to form bottom metal lines and then creating the gate oxide layer on nanowires (NWs), followed by selective removal from the top and bottom of the nanostructures. VGAA-NW transistors, fabricated using the lift-off-free approach, exhibit improved yield and reduced access resistance, leading to an enhanced drive current while maintaining good immunity against short-channel effects. Finally, elementary two-input logic gates within a single cell, using VNW transistors, demonstrate novel possibilities in advanced logic circuitry design and routing options in 3D.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.3c04180","citationCount":"0","resultStr":"{\"title\":\"Logic Gates Based on 3D Vertical Junctionless Gate-All-Around Transistors with Reliable Multilevel Contact Engineering\",\"authors\":\"Abhishek Kumar,&nbsp;Jonas Müller,&nbsp;Sylvain Pelloquin,&nbsp;Aurélie Lecestre and Guilhem Larrieu*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.3c04180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Vertical gate-all-around (V-GAA) represents the ultimate configuration in the forthcoming transistor industry, but it still encounters challenges in the semiconductor community. This paper introduces, for the first time, a dual-input logic gate circuit achieved using 3D vertical transistors with nanoscale sub-20-nm GAA, employing a novel technique for creating contacts and patterning metallic lines at the bottom level without the conventional lift-off process. This involves a two-step oxidation process: patterning the first field oxide to form bottom metal lines and then creating the gate oxide layer on nanowires (NWs), followed by selective removal from the top and bottom of the nanostructures. VGAA-NW transistors, fabricated using the lift-off-free approach, exhibit improved yield and reduced access resistance, leading to an enhanced drive current while maintaining good immunity against short-channel effects. Finally, elementary two-input logic gates within a single cell, using VNW transistors, demonstrate novel possibilities in advanced logic circuitry design and routing options in 3D.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.3c04180\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04180\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04180","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

垂直全方位栅极(V-GAA)代表了未来晶体管行业的终极配置,但它在半导体界仍面临挑战。本文首次介绍了利用三维垂直晶体管和纳米级 20 纳米以下 GAA 实现的双输入逻辑栅极电路,采用了一种新技术在底层创建触点和图案化金属线,而无需传统的掀离工艺。这涉及一个两步氧化工艺:将第一层场氧化物图案化以形成底部金属线,然后在纳米线 (NW) 上创建栅极氧化层,接着选择性地从纳米结构的顶部和底部去除。采用无掀离方法制造的 VGAA-NW 晶体管提高了成品率,降低了接入电阻,从而提高了驱动电流,同时保持了对短沟道效应的良好抗扰性。最后,利用 VNW 晶体管在单个单元内制造出基本的双输入逻辑门,展示了三维高级逻辑电路设计和路由选择的新可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Logic Gates Based on 3D Vertical Junctionless Gate-All-Around Transistors with Reliable Multilevel Contact Engineering

Vertical gate-all-around (V-GAA) represents the ultimate configuration in the forthcoming transistor industry, but it still encounters challenges in the semiconductor community. This paper introduces, for the first time, a dual-input logic gate circuit achieved using 3D vertical transistors with nanoscale sub-20-nm GAA, employing a novel technique for creating contacts and patterning metallic lines at the bottom level without the conventional lift-off process. This involves a two-step oxidation process: patterning the first field oxide to form bottom metal lines and then creating the gate oxide layer on nanowires (NWs), followed by selective removal from the top and bottom of the nanostructures. VGAA-NW transistors, fabricated using the lift-off-free approach, exhibit improved yield and reduced access resistance, leading to an enhanced drive current while maintaining good immunity against short-channel effects. Finally, elementary two-input logic gates within a single cell, using VNW transistors, demonstrate novel possibilities in advanced logic circuitry design and routing options in 3D.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Correction to "Injectable Fluorescent Neural Interfaces for Cell-Specific Stimulating and Imaging". Diverse Chiral Nanotubes Assembled from Identical DNA Strands. Inferior Interfacial Superconductivity in 1 UC FeSe/SrVO3/SrTiO3 with Screened Interfacial Electron-Phonon Coupling. Spatially Dependent in-Gap States Induced by Andreev Tunneling through a Single Electronic State. Tunable Multistate Ferroelectricity of Unit-Cell-Thick BaTiO3 Revived by a Ferroelectric SnS Monolayer via Interfacial Sliding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1