人类骨关节炎膝关节软骨和软骨下骨的机械和结构特性。

IF 5.1 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Bone and Mineral Research Pub Date : 2024-08-21 DOI:10.1093/jbmr/zjae094
Yizhong Jenny Hu, Y Eric Yu, Herbert J Cooper, Roshan P Shah, Jeffrey A Geller, X Lucas Lu, Elizabeth Shane, Joan Bathon, Nancy E Lane, X Edward Guo
{"title":"人类骨关节炎膝关节软骨和软骨下骨的机械和结构特性。","authors":"Yizhong Jenny Hu, Y Eric Yu, Herbert J Cooper, Roshan P Shah, Jeffrey A Geller, X Lucas Lu, Elizabeth Shane, Joan Bathon, Nancy E Lane, X Edward Guo","doi":"10.1093/jbmr/zjae094","DOIUrl":null,"url":null,"abstract":"<p><p>Knee osteoarthritis (OA), characterized by multiple joint tissue degenerations, remains a significant clinical challenge. Recent evidence suggests that crosstalk within the osteochondral unit may drive OA progression. Although structural-biomechanical properties of bone and cartilage have been studied, potential interaction within the osteochondral unit in the context of OA has yet to be investigated. We performed comprehensive structural and biomechanical quantification of the cartilage, subchondral bone plate (SBP), and subchondral trabecular bone (STB) using 101 osteochondral cores collected from tibial plateaus of 12 control human cadavers (CT, 5 male/7 female) and 19 patients undergoing total knee replacement (OA, 6 male/13 female). For each sample, we quantified SBP microstructure, plate-and-rod morphological properties of the STB using individual trabecula segmentation, and morphological and compositional properties of the articular cartilage. We also performed indentation testing on each compartment of the osteochondral unit to extract the respective structural-mechanical properties. Cartilage thickness was lower in moderate and severe OA regions, while Osteoarthritis Research Society International score was higher only in severe OA regions. GAG content did not change in any OA region. Aggregate and shear moduli were lower only in severe OA regions, while permeability was lower only in moderate OA regions. In the SBP, thickness and tissue mineral density were higher in moderate and severe OA regions. Tissue modulus of STB was lower in moderate OA regions despite a thicker and more mineralized SBP; this deterioration was not observed in severe OA regions. Regression analysis revealed strong correlations between cartilage and STB properties in CT; these correlations were also found in moderate OA regions but were not observed in severe OA regions. In summary, our findings comprehensively characterize the human OA osteochondral unit. Importantly, uncoupling cartilage and subchondral bone structural-mechanical properties may be a hallmark of OA.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and structural properties of articular cartilage and subchondral bone in human osteoarthritic knees.\",\"authors\":\"Yizhong Jenny Hu, Y Eric Yu, Herbert J Cooper, Roshan P Shah, Jeffrey A Geller, X Lucas Lu, Elizabeth Shane, Joan Bathon, Nancy E Lane, X Edward Guo\",\"doi\":\"10.1093/jbmr/zjae094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knee osteoarthritis (OA), characterized by multiple joint tissue degenerations, remains a significant clinical challenge. Recent evidence suggests that crosstalk within the osteochondral unit may drive OA progression. Although structural-biomechanical properties of bone and cartilage have been studied, potential interaction within the osteochondral unit in the context of OA has yet to be investigated. We performed comprehensive structural and biomechanical quantification of the cartilage, subchondral bone plate (SBP), and subchondral trabecular bone (STB) using 101 osteochondral cores collected from tibial plateaus of 12 control human cadavers (CT, 5 male/7 female) and 19 patients undergoing total knee replacement (OA, 6 male/13 female). For each sample, we quantified SBP microstructure, plate-and-rod morphological properties of the STB using individual trabecula segmentation, and morphological and compositional properties of the articular cartilage. We also performed indentation testing on each compartment of the osteochondral unit to extract the respective structural-mechanical properties. Cartilage thickness was lower in moderate and severe OA regions, while Osteoarthritis Research Society International score was higher only in severe OA regions. GAG content did not change in any OA region. Aggregate and shear moduli were lower only in severe OA regions, while permeability was lower only in moderate OA regions. In the SBP, thickness and tissue mineral density were higher in moderate and severe OA regions. Tissue modulus of STB was lower in moderate OA regions despite a thicker and more mineralized SBP; this deterioration was not observed in severe OA regions. Regression analysis revealed strong correlations between cartilage and STB properties in CT; these correlations were also found in moderate OA regions but were not observed in severe OA regions. In summary, our findings comprehensively characterize the human OA osteochondral unit. Importantly, uncoupling cartilage and subchondral bone structural-mechanical properties may be a hallmark of OA.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjae094\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae094","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

膝关节骨关节炎(OA)以多种关节组织退化为特征,仍然是一项重大的临床挑战。最近的证据表明,骨软骨单元内的串扰可能会推动 OA 的发展。虽然人们已经对骨和软骨的结构-生物力学特性进行了研究,但对骨软骨单元在 OA 背景下的潜在相互作用尚未进行研究。我们使用从 12 例对照人体尸体(CT,5 例男性/7 例女性)和 19 例接受全膝关节置换术的患者(OA,6 例男性/13 例女性)的胫骨平台上采集的 101 个骨软骨核心,对软骨、软骨下骨板和软骨下小梁骨进行了全面的结构和生物力学量化。我们对每个样本的软骨下骨板微观结构、软骨下小梁骨的板棒形态特性(使用单个小梁分割)以及关节软骨的形态和成分特性进行了量化。我们还对骨软骨单位的每个分区进行了压痕测试,以提取各自的结构力学特性。软骨厚度在中度和重度OA区域较低,而OARSI评分仅在重度OA区域较高。任何OA区域的凝胶体含量均无变化。只有在重度 OA 区域,集聚模量和剪切模量较低,而只有在中度 OA 区域,渗透性较低。在软骨下骨板中,中度和重度 OA 区域的厚度和 TMD 较高。软骨下骨小梁的组织模量在中度 OA 区域较低,尽管软骨下骨板更厚且矿化程度更高;而在重度 OA 区域则未观察到这种恶化。回归分析显示,CT 中软骨和软骨下小梁骨的特性之间存在很强的相关性;这些相关性在中度 OA 区域也有发现,但在重度 OA 区域没有观察到。总之,我们的研究结果全面描述了人类 OA 骨软骨单元的特征。重要的是,软骨和软骨下骨结构-力学性能的不耦合可能是 OA 的一个标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical and structural properties of articular cartilage and subchondral bone in human osteoarthritic knees.

Knee osteoarthritis (OA), characterized by multiple joint tissue degenerations, remains a significant clinical challenge. Recent evidence suggests that crosstalk within the osteochondral unit may drive OA progression. Although structural-biomechanical properties of bone and cartilage have been studied, potential interaction within the osteochondral unit in the context of OA has yet to be investigated. We performed comprehensive structural and biomechanical quantification of the cartilage, subchondral bone plate (SBP), and subchondral trabecular bone (STB) using 101 osteochondral cores collected from tibial plateaus of 12 control human cadavers (CT, 5 male/7 female) and 19 patients undergoing total knee replacement (OA, 6 male/13 female). For each sample, we quantified SBP microstructure, plate-and-rod morphological properties of the STB using individual trabecula segmentation, and morphological and compositional properties of the articular cartilage. We also performed indentation testing on each compartment of the osteochondral unit to extract the respective structural-mechanical properties. Cartilage thickness was lower in moderate and severe OA regions, while Osteoarthritis Research Society International score was higher only in severe OA regions. GAG content did not change in any OA region. Aggregate and shear moduli were lower only in severe OA regions, while permeability was lower only in moderate OA regions. In the SBP, thickness and tissue mineral density were higher in moderate and severe OA regions. Tissue modulus of STB was lower in moderate OA regions despite a thicker and more mineralized SBP; this deterioration was not observed in severe OA regions. Regression analysis revealed strong correlations between cartilage and STB properties in CT; these correlations were also found in moderate OA regions but were not observed in severe OA regions. In summary, our findings comprehensively characterize the human OA osteochondral unit. Importantly, uncoupling cartilage and subchondral bone structural-mechanical properties may be a hallmark of OA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
期刊最新文献
The Quantification of Bone Mineral Density Using Photon Counting Computed Tomography and its Implications for Detecting Bone Remodelling. 24-Hour Activity Composition is Associated with Lower Fall and Fracture Risk in Older Men. A quasi-experimental study about shared decision-making and motivational interviewing on patients with a recent fracture attending a fracture liaison services. Atypical fractures at non-classical sites associated with anti-resorptive therapy: A Systematic Review. Epidural Steroid Injections and Fracture Incidence Among Older Individuals with Radiculopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1