中风后失语症患者自然语言生成的四个维度。

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY Brain Pub Date : 2025-01-07 DOI:10.1093/brain/awae195
Marianne Casilio, Anna V Kasdan, Katherine Bryan, Kiiya Shibata, Sarah M Schneck, Deborah F Levy, Jillian L Entrup, Caitlin Onuscheck, Michael de Riesthal, Stephen M Wilson
{"title":"中风后失语症患者自然语言生成的四个维度。","authors":"Marianne Casilio, Anna V Kasdan, Katherine Bryan, Kiiya Shibata, Sarah M Schneck, Deborah F Levy, Jillian L Entrup, Caitlin Onuscheck, Michael de Riesthal, Stephen M Wilson","doi":"10.1093/brain/awae195","DOIUrl":null,"url":null,"abstract":"<p><p>There is a rich tradition of research on the neuroanatomical correlates of spoken language production in aphasia using constrained tasks (e.g. picture naming), which offer controlled insights into the distinct processes that govern speech and language (i.e. lexical-semantic access, morphosyntactic construction, phonological encoding, speech motor programming/execution). Yet these tasks do not necessarily reflect everyday language use. In contrast, naturalistic language production (also referred to as 'connected speech' or 'discourse') more closely approximates typical processing demands, requiring the dynamic integration of all aspects of speech and language. The brain bases of naturalistic language production remain relatively unknown, however, in part because of the difficulty in deriving features that are salient, quantifiable and interpretable relative to both speech-language processes and the extant literature. The present cross-sectional observational study seeks to address these challenges by leveraging a validated and comprehensive auditory-perceptual measurement system that yields four explanatory dimensions of performance-Paraphasia (misselection of words and sounds), Logopenia (paucity of words), Agrammatism (grammatical omissions) and Motor speech (impaired speech motor programming/execution). We used this system to characterize naturalistic language production in a large and representative sample of individuals with acute post-stroke aphasia (n = 118). Scores on each of the four dimensions were correlated with lesion metrics, and multivariate associations among the dimensions and brain regions were then explored. Our findings revealed distinct yet overlapping neuroanatomical correlates throughout the left-hemisphere language network. Paraphasia and logopenia were associated primarily with posterior regions, spanning both dorsal and ventral streams, which are critical for lexical-semantic access and phonological encoding. In contrast, agrammatism and motor speech were associated primarily with anterior regions of the dorsal stream that are involved in morphosyntactic construction and speech motor planning/execution, respectively. Collectively, we view these results as constituting a brain-behaviour model of naturalistic language production in aphasia, aligning with both historical and contemporary accounts of the neurobiology of spoken language production.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":" ","pages":"291-312"},"PeriodicalIF":10.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706289/pdf/","citationCount":"0","resultStr":"{\"title\":\"Four dimensions of naturalistic language production in aphasia after stroke.\",\"authors\":\"Marianne Casilio, Anna V Kasdan, Katherine Bryan, Kiiya Shibata, Sarah M Schneck, Deborah F Levy, Jillian L Entrup, Caitlin Onuscheck, Michael de Riesthal, Stephen M Wilson\",\"doi\":\"10.1093/brain/awae195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a rich tradition of research on the neuroanatomical correlates of spoken language production in aphasia using constrained tasks (e.g. picture naming), which offer controlled insights into the distinct processes that govern speech and language (i.e. lexical-semantic access, morphosyntactic construction, phonological encoding, speech motor programming/execution). Yet these tasks do not necessarily reflect everyday language use. In contrast, naturalistic language production (also referred to as 'connected speech' or 'discourse') more closely approximates typical processing demands, requiring the dynamic integration of all aspects of speech and language. The brain bases of naturalistic language production remain relatively unknown, however, in part because of the difficulty in deriving features that are salient, quantifiable and interpretable relative to both speech-language processes and the extant literature. The present cross-sectional observational study seeks to address these challenges by leveraging a validated and comprehensive auditory-perceptual measurement system that yields four explanatory dimensions of performance-Paraphasia (misselection of words and sounds), Logopenia (paucity of words), Agrammatism (grammatical omissions) and Motor speech (impaired speech motor programming/execution). We used this system to characterize naturalistic language production in a large and representative sample of individuals with acute post-stroke aphasia (n = 118). Scores on each of the four dimensions were correlated with lesion metrics, and multivariate associations among the dimensions and brain regions were then explored. Our findings revealed distinct yet overlapping neuroanatomical correlates throughout the left-hemisphere language network. Paraphasia and logopenia were associated primarily with posterior regions, spanning both dorsal and ventral streams, which are critical for lexical-semantic access and phonological encoding. In contrast, agrammatism and motor speech were associated primarily with anterior regions of the dorsal stream that are involved in morphosyntactic construction and speech motor planning/execution, respectively. Collectively, we view these results as constituting a brain-behaviour model of naturalistic language production in aphasia, aligning with both historical and contemporary accounts of the neurobiology of spoken language production.</p>\",\"PeriodicalId\":9063,\"journal\":{\"name\":\"Brain\",\"volume\":\" \",\"pages\":\"291-312\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706289/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/brain/awae195\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae195","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

关于失语症患者口语语言产生的神经解剖学相关性的研究有着丰富的传统,这些研究使用受限任务(如图片命名),对支配言语和语言的不同过程(即词汇-语义访问、形态句法结构、语音编码、言语运动编程/执行)提供了有控制的洞察力。然而,这些任务并不一定能反映日常语言的使用。相比之下,自然语言生成(也称为连贯言语或话语)更接近典型的处理需求,需要动态整合言语和语言的各个方面。然而,自然语言生成的大脑基础仍然相对未知,部分原因是很难得出相对于语音语言过程和现有文献而言突出、可量化和可解释的特征。本横断面观察研究试图利用一套经过验证的综合听觉-知觉测量系统来解决这些难题,该系统可对四个方面的表现进行解释--Paraphasia(错误选择单词和声音)、Logopenia(单词匮乏)、Agrammatism(语法遗漏)和Motor speech(言语运动编程/执行受损)。我们使用该系统分析了大量具有代表性的脑卒中后急性失语症患者(n = 118)的自然语言能力。四个维度中每个维度的得分都与病变指标相关,然后对维度和脑区之间的多变量关联进行了探讨。我们的研究结果表明,在整个左半球语言网络中,存在着不同但又相互重叠的神经解剖相关性。副语症和逻各斯失认症主要与横跨背侧流和腹侧流的后部区域相关,这些区域对于词汇-语义访问和语音编码至关重要。与此相反,"无语法 "症和 "运动性言语 "主要与背侧流的前部区域有关,这些区域分别参与形态句法构建和言语运动规划/执行。总之,我们认为这些结果构成了失语症患者自然语言生成的大脑行为模型,与口语生成神经生物学的历史和当代观点一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Four dimensions of naturalistic language production in aphasia after stroke.

There is a rich tradition of research on the neuroanatomical correlates of spoken language production in aphasia using constrained tasks (e.g. picture naming), which offer controlled insights into the distinct processes that govern speech and language (i.e. lexical-semantic access, morphosyntactic construction, phonological encoding, speech motor programming/execution). Yet these tasks do not necessarily reflect everyday language use. In contrast, naturalistic language production (also referred to as 'connected speech' or 'discourse') more closely approximates typical processing demands, requiring the dynamic integration of all aspects of speech and language. The brain bases of naturalistic language production remain relatively unknown, however, in part because of the difficulty in deriving features that are salient, quantifiable and interpretable relative to both speech-language processes and the extant literature. The present cross-sectional observational study seeks to address these challenges by leveraging a validated and comprehensive auditory-perceptual measurement system that yields four explanatory dimensions of performance-Paraphasia (misselection of words and sounds), Logopenia (paucity of words), Agrammatism (grammatical omissions) and Motor speech (impaired speech motor programming/execution). We used this system to characterize naturalistic language production in a large and representative sample of individuals with acute post-stroke aphasia (n = 118). Scores on each of the four dimensions were correlated with lesion metrics, and multivariate associations among the dimensions and brain regions were then explored. Our findings revealed distinct yet overlapping neuroanatomical correlates throughout the left-hemisphere language network. Paraphasia and logopenia were associated primarily with posterior regions, spanning both dorsal and ventral streams, which are critical for lexical-semantic access and phonological encoding. In contrast, agrammatism and motor speech were associated primarily with anterior regions of the dorsal stream that are involved in morphosyntactic construction and speech motor planning/execution, respectively. Collectively, we view these results as constituting a brain-behaviour model of naturalistic language production in aphasia, aligning with both historical and contemporary accounts of the neurobiology of spoken language production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
期刊最新文献
Plasma phosphorylated tau217 strongly associates with memory deficits in the Alzheimer’s disease spectrum Correction to: Bidirectional gut-to-brain and brain-to-gut propagation of synucleinopathy in non-human primates. Reshaping computational neuropsychiatry beyond synaptopathy. Trigeminal nerve microstructure is linked with neuroinflammation and brainstem activity in migraine. Transthyretin variants impact blood–nerve barrier and neuroinflammation in amyloidotic neuropathy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1