柿树叶水提取物介导的银纳米颗粒生物合成及其对 Hafnia sp.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Letters in Applied Microbiology Pub Date : 2024-07-01 DOI:10.1093/lambio/ovae055
Xiqian Tan, Jianbo Pei, Defu Zhang, Fangchao Cui, Dangfeng Wang, Xuepeng Li, Jianrong Li
{"title":"柿树叶水提取物介导的银纳米颗粒生物合成及其对 Hafnia sp.","authors":"Xiqian Tan, Jianbo Pei, Defu Zhang, Fangchao Cui, Dangfeng Wang, Xuepeng Li, Jianrong Li","doi":"10.1093/lambio/ovae055","DOIUrl":null,"url":null,"abstract":"<p><p>Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 μg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 μg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 μg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prunus persica leaves aqueous extract mediated biosynthesis of Ag nanoparticles and assessment of its anti-quorum sensing potential against Hafnia species.\",\"authors\":\"Xiqian Tan, Jianbo Pei, Defu Zhang, Fangchao Cui, Dangfeng Wang, Xuepeng Li, Jianrong Li\",\"doi\":\"10.1093/lambio/ovae055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 μg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 μg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 μg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.</p>\",\"PeriodicalId\":17962,\"journal\":{\"name\":\"Letters in Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/lambio/ovae055\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovae055","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨柿叶水提取物生物合成的银纳米粒子(AgNPs)对水产品中与腐败相关的Hafnia.sp.致病因子的抑制能力。合成的P-AgNPs呈球形,平均粒径为36.3 nm,zeta电位为21.8 ± 1.33 mV。此外,还评估了P-AgNPs对两种Hafnia.sp菌株的生长及其法定量感应(QS)调控的毒力因子(如生物膜的形成、N-乙酰-高丝氨酸内酯(AHL)、蛋白酶和外多糖的分泌)的抑制作用,以及对其蜂拥和游泳运动的抑制作用。P-AgNPs 对两种 Hafnia.sp 菌株的最低抑制浓度(MIC)为 64 μg-mL-1。当 P-AgNPs 的浓度低于 MIC 时,8-32 μg-mL-1 的 P-AgNPs 可抑制 Hafnia.sp 的生物膜形成,但 0.5-4 μg-mL-1 的 P-AgNPs 可促进 Hafnia.sp 的生物膜形成。在不同浓度下,P-AgNPs 对 AHLs 和蛋白酶的产生、游动和成群运动有不同的抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prunus persica leaves aqueous extract mediated biosynthesis of Ag nanoparticles and assessment of its anti-quorum sensing potential against Hafnia species.

Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 μg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 μg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 μg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Applied Microbiology
Letters in Applied Microbiology 工程技术-生物工程与应用微生物
CiteScore
4.40
自引率
4.20%
发文量
225
审稿时长
3.3 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
期刊最新文献
Common mycorrhizal networks enhance growth and nutrient uptake in non-mycorrhizal Chenopodium album via Parthenium hysterophorus. Detection and antimicrobial resistance profiles of Salmonella enterica recovered from house fly intestinal tracts and environments of selected broiler farms in Texas. Selection of resistant coliform bacteria in the intestine of pigs following flock versus individual treatment with neomycin against post-weaning diarrhoae or amoxicillin against umbilical infection. Culture Studies of Phytoplankton Isolated from Sumiling Dam and Their Bioremediation Capacity in Aquaculture Wastewater. Isolation and anti-Xanthomonas citri activity of unguinol produced by Aspergillus unguis CBMAI 2140.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1