Rodrigo V. Honorato, Mikael E. Trellet, Brian Jiménez-García, Jörg J. Schaarschmidt, Marco Giulini, Victor Reys, Panagiotis I. Koukos, João P. G. L. M. Rodrigues, Ezgi Karaca, Gydo C. P. van Zundert, Jorge Roel-Touris, Charlotte W. van Noort, Zuzana Jandová, Adrien S. J. Melquiond, Alexandre M. J. J. Bonvin
{"title":"用于生物分子复合物综合建模的 HADDOCK2.4 网络服务器。","authors":"Rodrigo V. Honorato, Mikael E. Trellet, Brian Jiménez-García, Jörg J. Schaarschmidt, Marco Giulini, Victor Reys, Panagiotis I. Koukos, João P. G. L. M. Rodrigues, Ezgi Karaca, Gydo C. P. van Zundert, Jorge Roel-Touris, Charlotte W. van Noort, Zuzana Jandová, Adrien S. J. Melquiond, Alexandre M. J. J. Bonvin","doi":"10.1038/s41596-024-01011-0","DOIUrl":null,"url":null,"abstract":"Interactions between macromolecules, such as proteins and nucleic acids, are essential for cellular functions. Experimental methods can fail to provide all the information required to fully model biomolecular complexes at atomic resolution, particularly for large and heterogeneous assemblies. Integrative computational approaches have, therefore, gained popularity, complementing traditional experimental methods in structural biology. Here, we introduce HADDOCK2.4, an integrative modeling platform, and its updated web interface ( https://wenmr.science.uu.nl/haddock2.4 ). The platform seamlessly integrates diverse experimental and theoretical data to generate high-quality models of macromolecular complexes. The user-friendly web server offers automated parameter settings, access to distributed computing resources, and pre- and post-processing steps that enhance the user experience. To present the web server’s various interfaces and features, we demonstrate two different applications: (i) we predict the structure of an antibody–antigen complex by using NMR data for the antigen and knowledge of the hypervariable loops for the antibody, and (ii) we perform coarse-grained modeling of PRC1 with a nucleosome particle guided by mutagenesis and functional data. The described protocols require some basic familiarity with molecular modeling and the Linux command shell. This new version of our widely used HADDOCK web server allows structural biologists and non-experts to explore intricate macromolecular assemblies encompassing various molecule types. The HADDOCK2.4 web server is a modeling platform that can integrate experimental and theoretical data for guiding 3D prediction of biomolecular complexes.","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":"19 11","pages":"3219-3241"},"PeriodicalIF":13.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The HADDOCK2.4 web server for integrative modeling of biomolecular complexes\",\"authors\":\"Rodrigo V. Honorato, Mikael E. Trellet, Brian Jiménez-García, Jörg J. Schaarschmidt, Marco Giulini, Victor Reys, Panagiotis I. Koukos, João P. G. L. M. Rodrigues, Ezgi Karaca, Gydo C. P. van Zundert, Jorge Roel-Touris, Charlotte W. van Noort, Zuzana Jandová, Adrien S. J. Melquiond, Alexandre M. J. J. Bonvin\",\"doi\":\"10.1038/s41596-024-01011-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactions between macromolecules, such as proteins and nucleic acids, are essential for cellular functions. Experimental methods can fail to provide all the information required to fully model biomolecular complexes at atomic resolution, particularly for large and heterogeneous assemblies. Integrative computational approaches have, therefore, gained popularity, complementing traditional experimental methods in structural biology. Here, we introduce HADDOCK2.4, an integrative modeling platform, and its updated web interface ( https://wenmr.science.uu.nl/haddock2.4 ). The platform seamlessly integrates diverse experimental and theoretical data to generate high-quality models of macromolecular complexes. The user-friendly web server offers automated parameter settings, access to distributed computing resources, and pre- and post-processing steps that enhance the user experience. To present the web server’s various interfaces and features, we demonstrate two different applications: (i) we predict the structure of an antibody–antigen complex by using NMR data for the antigen and knowledge of the hypervariable loops for the antibody, and (ii) we perform coarse-grained modeling of PRC1 with a nucleosome particle guided by mutagenesis and functional data. The described protocols require some basic familiarity with molecular modeling and the Linux command shell. This new version of our widely used HADDOCK web server allows structural biologists and non-experts to explore intricate macromolecular assemblies encompassing various molecule types. The HADDOCK2.4 web server is a modeling platform that can integrate experimental and theoretical data for guiding 3D prediction of biomolecular complexes.\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\"19 11\",\"pages\":\"3219-3241\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41596-024-01011-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41596-024-01011-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The HADDOCK2.4 web server for integrative modeling of biomolecular complexes
Interactions between macromolecules, such as proteins and nucleic acids, are essential for cellular functions. Experimental methods can fail to provide all the information required to fully model biomolecular complexes at atomic resolution, particularly for large and heterogeneous assemblies. Integrative computational approaches have, therefore, gained popularity, complementing traditional experimental methods in structural biology. Here, we introduce HADDOCK2.4, an integrative modeling platform, and its updated web interface ( https://wenmr.science.uu.nl/haddock2.4 ). The platform seamlessly integrates diverse experimental and theoretical data to generate high-quality models of macromolecular complexes. The user-friendly web server offers automated parameter settings, access to distributed computing resources, and pre- and post-processing steps that enhance the user experience. To present the web server’s various interfaces and features, we demonstrate two different applications: (i) we predict the structure of an antibody–antigen complex by using NMR data for the antigen and knowledge of the hypervariable loops for the antibody, and (ii) we perform coarse-grained modeling of PRC1 with a nucleosome particle guided by mutagenesis and functional data. The described protocols require some basic familiarity with molecular modeling and the Linux command shell. This new version of our widely used HADDOCK web server allows structural biologists and non-experts to explore intricate macromolecular assemblies encompassing various molecule types. The HADDOCK2.4 web server is a modeling platform that can integrate experimental and theoretical data for guiding 3D prediction of biomolecular complexes.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.