Allan E Stolarski, Jiann-Jyh Lai, Jiyoun Kim, Kenneth L Rock, Daniel Remick
{"title":"c 型凝集素受体 clec2d 的基因消减会增加腹膜炎的死亡率、炎症和生理机能,但不会减轻器官损伤。","authors":"Allan E Stolarski, Jiann-Jyh Lai, Jiyoun Kim, Kenneth L Rock, Daniel Remick","doi":"10.1097/SHK.0000000000002413","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Background: Sepsis accounts for substantial morbidity and mortality motivating investigators to continue the search for pathways and molecules driving the pathogenesis of the disease. The current study examined if the novel C-type lectin receptor (CLR), Clec2d, plays a significant role in the pathogenesis of sepsis. Methods: Clec2d knockout (KO) mice were fully backcrossed onto the C57/BL6 background. Acute endotoxemia was induced with an intraperitoneal injection of lipopolysaccharide (LPS). Sepsis was induced in two different models, cecal ligation and puncture (CLP) and Pseudomonas aeruginosa pneumonia. Both models were treated with antibiotics and fluid resuscitation. In the sepsis models, physiologic and hematologic measurements were measured at 24 h by collecting a small sample of peripheral blood. Mortality was followed for 14 days. Results : A total of 197 mice were studied, 58 wild type (WT) and 54 knock-out (KO) in the LPS model; 27 wild type and 21 KO mice in the CLP model; and 22 WT and 15 KO mice in the pneumonia model. Clec2d KO mice had greater mortality in the LPS and CLP studies but not the pneumonia model. There were significant differences in multiple parameters determined 24 h post sepsis between mice who subsequently died and those lived. Consistent with previous reports in the CLP model, higher concentrations of IL-6, increased numbers of peripheral blood lymphocytes and greater renal injury were found in the dying mice. In contrast, in the pneumonia model, IL-6 was higher in the surviving mice; however, the IL-6 levels in the pneumonia model (0.6 ± 0.3 ng/mL mean ± SEM) were less than 2% of the IL-6 levels of mice that died in the CLP model (41 ± 9 ng/mL, mean ± SEM). There were no differences in the lymphocyte count or renal injury between living and dying mice in the pneumonia model. In both sepsis models, dying mice had lower heart rates, respiratory rates, and body temperatures. These values were also lower in the KO mice compared to the WT in CLP, but the breath rate and body temperature were increased in the KO pneumonia mice. Conclusion: The C-type lectin receptor Clec2d plays a complicated role in the pathogenesis of sepsis, which varies with source of infection as demonstrated in the models used to study the disease. These data highlight the heterogeneity of the responses to sepsis and provide further evidence that a single common pathway driving sepsis organ injury and death likely does not exist.</p>","PeriodicalId":21667,"journal":{"name":"SHOCK","volume":" ","pages":"437-446"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365780/pdf/","citationCount":"0","resultStr":"{\"title\":\"GENETIC ABLATION OF THE C-TYPE LECTIN RECEPTOR CLEC2D INCREASES PERITONITIS MORTALITY, INFLAMMATION, AND PHYSIOLOGY WITHOUT DIMINISHING ORGAN INJURY.\",\"authors\":\"Allan E Stolarski, Jiann-Jyh Lai, Jiyoun Kim, Kenneth L Rock, Daniel Remick\",\"doi\":\"10.1097/SHK.0000000000002413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Background: Sepsis accounts for substantial morbidity and mortality motivating investigators to continue the search for pathways and molecules driving the pathogenesis of the disease. The current study examined if the novel C-type lectin receptor (CLR), Clec2d, plays a significant role in the pathogenesis of sepsis. Methods: Clec2d knockout (KO) mice were fully backcrossed onto the C57/BL6 background. Acute endotoxemia was induced with an intraperitoneal injection of lipopolysaccharide (LPS). Sepsis was induced in two different models, cecal ligation and puncture (CLP) and Pseudomonas aeruginosa pneumonia. Both models were treated with antibiotics and fluid resuscitation. In the sepsis models, physiologic and hematologic measurements were measured at 24 h by collecting a small sample of peripheral blood. Mortality was followed for 14 days. Results : A total of 197 mice were studied, 58 wild type (WT) and 54 knock-out (KO) in the LPS model; 27 wild type and 21 KO mice in the CLP model; and 22 WT and 15 KO mice in the pneumonia model. Clec2d KO mice had greater mortality in the LPS and CLP studies but not the pneumonia model. There were significant differences in multiple parameters determined 24 h post sepsis between mice who subsequently died and those lived. Consistent with previous reports in the CLP model, higher concentrations of IL-6, increased numbers of peripheral blood lymphocytes and greater renal injury were found in the dying mice. In contrast, in the pneumonia model, IL-6 was higher in the surviving mice; however, the IL-6 levels in the pneumonia model (0.6 ± 0.3 ng/mL mean ± SEM) were less than 2% of the IL-6 levels of mice that died in the CLP model (41 ± 9 ng/mL, mean ± SEM). There were no differences in the lymphocyte count or renal injury between living and dying mice in the pneumonia model. In both sepsis models, dying mice had lower heart rates, respiratory rates, and body temperatures. These values were also lower in the KO mice compared to the WT in CLP, but the breath rate and body temperature were increased in the KO pneumonia mice. Conclusion: The C-type lectin receptor Clec2d plays a complicated role in the pathogenesis of sepsis, which varies with source of infection as demonstrated in the models used to study the disease. These data highlight the heterogeneity of the responses to sepsis and provide further evidence that a single common pathway driving sepsis organ injury and death likely does not exist.</p>\",\"PeriodicalId\":21667,\"journal\":{\"name\":\"SHOCK\",\"volume\":\" \",\"pages\":\"437-446\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365780/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SHOCK\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SHK.0000000000002413\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHOCK","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SHK.0000000000002413","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
GENETIC ABLATION OF THE C-TYPE LECTIN RECEPTOR CLEC2D INCREASES PERITONITIS MORTALITY, INFLAMMATION, AND PHYSIOLOGY WITHOUT DIMINISHING ORGAN INJURY.
Abstract: Background: Sepsis accounts for substantial morbidity and mortality motivating investigators to continue the search for pathways and molecules driving the pathogenesis of the disease. The current study examined if the novel C-type lectin receptor (CLR), Clec2d, plays a significant role in the pathogenesis of sepsis. Methods: Clec2d knockout (KO) mice were fully backcrossed onto the C57/BL6 background. Acute endotoxemia was induced with an intraperitoneal injection of lipopolysaccharide (LPS). Sepsis was induced in two different models, cecal ligation and puncture (CLP) and Pseudomonas aeruginosa pneumonia. Both models were treated with antibiotics and fluid resuscitation. In the sepsis models, physiologic and hematologic measurements were measured at 24 h by collecting a small sample of peripheral blood. Mortality was followed for 14 days. Results : A total of 197 mice were studied, 58 wild type (WT) and 54 knock-out (KO) in the LPS model; 27 wild type and 21 KO mice in the CLP model; and 22 WT and 15 KO mice in the pneumonia model. Clec2d KO mice had greater mortality in the LPS and CLP studies but not the pneumonia model. There were significant differences in multiple parameters determined 24 h post sepsis between mice who subsequently died and those lived. Consistent with previous reports in the CLP model, higher concentrations of IL-6, increased numbers of peripheral blood lymphocytes and greater renal injury were found in the dying mice. In contrast, in the pneumonia model, IL-6 was higher in the surviving mice; however, the IL-6 levels in the pneumonia model (0.6 ± 0.3 ng/mL mean ± SEM) were less than 2% of the IL-6 levels of mice that died in the CLP model (41 ± 9 ng/mL, mean ± SEM). There were no differences in the lymphocyte count or renal injury between living and dying mice in the pneumonia model. In both sepsis models, dying mice had lower heart rates, respiratory rates, and body temperatures. These values were also lower in the KO mice compared to the WT in CLP, but the breath rate and body temperature were increased in the KO pneumonia mice. Conclusion: The C-type lectin receptor Clec2d plays a complicated role in the pathogenesis of sepsis, which varies with source of infection as demonstrated in the models used to study the disease. These data highlight the heterogeneity of the responses to sepsis and provide further evidence that a single common pathway driving sepsis organ injury and death likely does not exist.
期刊介绍:
SHOCK®: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches includes studies of novel therapeutic approaches, such as immunomodulation, gene therapy, nutrition, and others. The mission of the Journal is to foster and promote multidisciplinary studies, both experimental and clinical in nature, that critically examine the etiology, mechanisms and novel therapeutics of shock-related pathophysiological conditions. Its purpose is to excel as a vehicle for timely publication in the areas of basic and clinical studies of shock, trauma, sepsis, inflammation, ischemia, and related pathobiological states, with particular emphasis on the biologic mechanisms that determine the response to such injury. Making such information available will ultimately facilitate improved care of the traumatized or septic individual.