病媒传播疾病的拉格朗日-欧勒混合模型。

IF 2.2 4区 数学 Q2 BIOLOGY Journal of Mathematical Biology Pub Date : 2024-06-18 DOI:10.1007/s00285-024-02109-5
Daozhou Gao, Xiaoyan Yuan
{"title":"病媒传播疾病的拉格朗日-欧勒混合模型。","authors":"Daozhou Gao, Xiaoyan Yuan","doi":"10.1007/s00285-024-02109-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a multi-patch and multi-group vector-borne disease model is proposed to study the effects of host commuting (Lagrangian approach) and/or vector migration (Eulerian approach) on disease spread. We first define the basic reproduction number of the model, <math><msub><mi>R</mi> <mn>0</mn></msub> </math> , which completely determines the global dynamics of the model system. Namely, if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>≤</mo> <mn>1</mn></mrow> </math> , then the disease-free equilibrium is globally asymptotically stable, and if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></mrow> </math> , then there exists a unique endemic equilibrium which is globally asymptotically stable. Then, we show that the basic reproduction number has lower and upper bounds which are independent of the host residence times matrix and the vector migration matrix. In particular, nonhomogeneous mixing of hosts and vectors in a homogeneous environment generally increases disease persistence and the basic reproduction number of the model attains its minimum when the distributions of hosts and vectors are proportional. Moreover, <math><msub><mi>R</mi> <mn>0</mn></msub> </math> can also be estimated by the basic reproduction numbers of disconnected patches if the environment is homogeneous. The optimal vector control strategy is obtained for a special scenario. In the two-patch and two-group case, we numerically analyze the dependence of the basic reproduction number and the total number of infected people on the host residence times matrix and illustrate the optimal vector control strategy in homogeneous and heterogeneous environments.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189357/pdf/","citationCount":"0","resultStr":"{\"title\":\"A hybrid Lagrangian-Eulerian model for vector-borne diseases.\",\"authors\":\"Daozhou Gao, Xiaoyan Yuan\",\"doi\":\"10.1007/s00285-024-02109-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a multi-patch and multi-group vector-borne disease model is proposed to study the effects of host commuting (Lagrangian approach) and/or vector migration (Eulerian approach) on disease spread. We first define the basic reproduction number of the model, <math><msub><mi>R</mi> <mn>0</mn></msub> </math> , which completely determines the global dynamics of the model system. Namely, if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>≤</mo> <mn>1</mn></mrow> </math> , then the disease-free equilibrium is globally asymptotically stable, and if <math> <mrow><msub><mi>R</mi> <mn>0</mn></msub> <mo>></mo> <mn>1</mn></mrow> </math> , then there exists a unique endemic equilibrium which is globally asymptotically stable. Then, we show that the basic reproduction number has lower and upper bounds which are independent of the host residence times matrix and the vector migration matrix. In particular, nonhomogeneous mixing of hosts and vectors in a homogeneous environment generally increases disease persistence and the basic reproduction number of the model attains its minimum when the distributions of hosts and vectors are proportional. Moreover, <math><msub><mi>R</mi> <mn>0</mn></msub> </math> can also be estimated by the basic reproduction numbers of disconnected patches if the environment is homogeneous. The optimal vector control strategy is obtained for a special scenario. In the two-patch and two-group case, we numerically analyze the dependence of the basic reproduction number and the total number of infected people on the host residence times matrix and illustrate the optimal vector control strategy in homogeneous and heterogeneous environments.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189357/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02109-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02109-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个多斑块和多群体病媒传播疾病模型,以研究宿主通勤(拉格朗日方法)和/或病媒迁移(欧拉方法)对疾病传播的影响。我们首先定义了模型的基本繁殖数 R 0,它完全决定了模型系统的全局动态。也就是说,如果 R 0 ≤ 1,则无疾病平衡是全局渐近稳定的;如果 R 0 > 1,则存在一个全局渐近稳定的唯一流行平衡。然后,我们证明了基本繁殖数具有下限和上限,它们与宿主居住时间矩阵和矢量迁移矩阵无关。特别是,宿主和载体在均质环境中的非均质混合通常会增加疾病的持续性,当宿主和载体的分布成比例时,模型的基本繁殖数达到最小值。此外,如果环境是均质的,R 0 也可以通过互不相连的斑块的基本繁殖数来估算。在特殊情况下,可以获得最佳载体控制策略。在两个斑块和两个群体的情况下,我们数值分析了基本繁殖数和感染总人数对宿主居住时间矩阵的依赖关系,并说明了同质和异质环境下的最优向量控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid Lagrangian-Eulerian model for vector-borne diseases.

In this paper, a multi-patch and multi-group vector-borne disease model is proposed to study the effects of host commuting (Lagrangian approach) and/or vector migration (Eulerian approach) on disease spread. We first define the basic reproduction number of the model, R 0 , which completely determines the global dynamics of the model system. Namely, if R 0 1 , then the disease-free equilibrium is globally asymptotically stable, and if R 0 > 1 , then there exists a unique endemic equilibrium which is globally asymptotically stable. Then, we show that the basic reproduction number has lower and upper bounds which are independent of the host residence times matrix and the vector migration matrix. In particular, nonhomogeneous mixing of hosts and vectors in a homogeneous environment generally increases disease persistence and the basic reproduction number of the model attains its minimum when the distributions of hosts and vectors are proportional. Moreover, R 0 can also be estimated by the basic reproduction numbers of disconnected patches if the environment is homogeneous. The optimal vector control strategy is obtained for a special scenario. In the two-patch and two-group case, we numerically analyze the dependence of the basic reproduction number and the total number of infected people on the host residence times matrix and illustrate the optimal vector control strategy in homogeneous and heterogeneous environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
期刊最新文献
Graph-based, dynamics-preserving reduction of (bio)chemical systems Walk this way: modeling foraging ant dynamics in multiple food source environments Correction: Do fatal infectious diseases eradicate host species? Stability of a stochastic brucellosis model with semi-Markovian switching and diffusion. The impact of harvesting on the evolutionary dynamics of prey species in a prey-predator systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1