Sarah A Angus, Joshua L Taylor, Leah M Mann, Alexandra M Williams, Eric J Stöhr, Jason S Au, A William Sheel, Paolo B Dominelli
{"title":"一名神志清醒的男性在运动时接受机械通气:病例报告。","authors":"Sarah A Angus, Joshua L Taylor, Leah M Mann, Alexandra M Williams, Eric J Stöhr, Jason S Au, A William Sheel, Paolo B Dominelli","doi":"10.1139/apnm-2024-0100","DOIUrl":null,"url":null,"abstract":"<p><p>We recently explored the cardiopulmonary interactions during partial unloading of the respiratory muscles during exercise. Expanding upon this work, we present a noteworthy case study whereby we eliminated the influence of respiration on cardiac function in a conscious but mechanically ventilated human during exercise. This human was a young healthy endurance-trained male who was mechanically ventilated during semi-recumbent cycle exercise at 75 Watts (W) (∼30% W<sub>max</sub>). During mechanically ventilated exercise, esophageal pressure was reduced to levels indistinguishable from the cardiac artefact which led to a 94% reduction in the power of breathing. The reduction in respiratory pressures and respiratory muscle work led to a decrease in cardiac output (-6%), which was due to a reduction in stroke volume (-13%), left ventricular end-diastolic volume (-15%), and left-ventricular end-systolic volume (-17%) that was not compensated for by heart rate. Our case highlights the influence of extreme mechanical ventilation on cardiac function while noting the possible presence of a maximal physiological limit to which respiration (and its associated pressures) impacts cardiac function when the power of breathing is maximally reduced.</p>","PeriodicalId":93878,"journal":{"name":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","volume":" ","pages":"1436-1440"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical ventilation in a conscious male during exercise: a case report.\",\"authors\":\"Sarah A Angus, Joshua L Taylor, Leah M Mann, Alexandra M Williams, Eric J Stöhr, Jason S Au, A William Sheel, Paolo B Dominelli\",\"doi\":\"10.1139/apnm-2024-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We recently explored the cardiopulmonary interactions during partial unloading of the respiratory muscles during exercise. Expanding upon this work, we present a noteworthy case study whereby we eliminated the influence of respiration on cardiac function in a conscious but mechanically ventilated human during exercise. This human was a young healthy endurance-trained male who was mechanically ventilated during semi-recumbent cycle exercise at 75 Watts (W) (∼30% W<sub>max</sub>). During mechanically ventilated exercise, esophageal pressure was reduced to levels indistinguishable from the cardiac artefact which led to a 94% reduction in the power of breathing. The reduction in respiratory pressures and respiratory muscle work led to a decrease in cardiac output (-6%), which was due to a reduction in stroke volume (-13%), left ventricular end-diastolic volume (-15%), and left-ventricular end-systolic volume (-17%) that was not compensated for by heart rate. Our case highlights the influence of extreme mechanical ventilation on cardiac function while noting the possible presence of a maximal physiological limit to which respiration (and its associated pressures) impacts cardiac function when the power of breathing is maximally reduced.</p>\",\"PeriodicalId\":93878,\"journal\":{\"name\":\"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme\",\"volume\":\" \",\"pages\":\"1436-1440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/apnm-2024-0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/apnm-2024-0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical ventilation in a conscious male during exercise: a case report.
We recently explored the cardiopulmonary interactions during partial unloading of the respiratory muscles during exercise. Expanding upon this work, we present a noteworthy case study whereby we eliminated the influence of respiration on cardiac function in a conscious but mechanically ventilated human during exercise. This human was a young healthy endurance-trained male who was mechanically ventilated during semi-recumbent cycle exercise at 75 Watts (W) (∼30% Wmax). During mechanically ventilated exercise, esophageal pressure was reduced to levels indistinguishable from the cardiac artefact which led to a 94% reduction in the power of breathing. The reduction in respiratory pressures and respiratory muscle work led to a decrease in cardiac output (-6%), which was due to a reduction in stroke volume (-13%), left ventricular end-diastolic volume (-15%), and left-ventricular end-systolic volume (-17%) that was not compensated for by heart rate. Our case highlights the influence of extreme mechanical ventilation on cardiac function while noting the possible presence of a maximal physiological limit to which respiration (and its associated pressures) impacts cardiac function when the power of breathing is maximally reduced.