为运动处方确定斜坡递增运动平均响应时间的方法比较。

Nikan Behboodpour, Brayden Halvorson, Juan M Murias, Daniel Keir, Glen Belfry
{"title":"为运动处方确定斜坡递增运动平均响应时间的方法比较。","authors":"Nikan Behboodpour, Brayden Halvorson, Juan M Murias, Daniel Keir, Glen Belfry","doi":"10.1080/02701367.2024.2346137","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> The oxygen uptake (<math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub>) vs power output relationship from ramp incremental exercise is used to prescribe aerobic exercise. As power output increases, there is a delay in <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> that contributes to a misalignment of <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> from power output; the mean response time (MRT). If the MRT is not considered in exercise prescription, ramp incremental-identified power outputs will elicit <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> values that are higher than intended. We compared three methods of determining MRT (exponential modeling (MRT<sub>EXP</sub>), linear modeling (MRT<sub>LIN</sub>), and the steady-state method (MRT<sub>SS</sub>)) and evaluated their accuracy at predicting the <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> associated with power outputs approximating 75% and 85% of gas exchange threshold and 15% of the difference between gas exchange threshold and maximal <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> (Δ15). <b>Methods:</b> Ten males performed a 30-W∙min<sup>-1</sup> ramp incremental and three 30-min constant power output cycle ergometer trials with intensities at 75% gas exchange threshold, 85% gas exchange threshold, and ∆15. At each intensity, the measured steady-state <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> during each 30-min test was compared to the <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> predicted after adjustment by each of the three MRTs. <b>Results:</b> For all three MRT methods, predicted <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> was not different (<i>p</i> = 1.000) from the measured <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> at 75%GET (MRT<sub>EXP</sub>, 31 mL, MRT<sub>LIN</sub>, -35 mL, MRT<sub>SS</sub> 11 mL), 85%gas exchange threshold (MRT<sub>EXP</sub> -14 mL, MRT<sub>LIN</sub> -80 mL, MRT<sub>SS</sub> -32 mL). At Δ15, predicted <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> based on MRT<sub>EXP</sub> was not different (<i>p</i> = .767) from the measured <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub>, but was different for MRT<sub>LIN</sub> (<i>p</i> < .001) and MRT<sub>SS</sub> (<i>p</i> = .03). <b>Conclusion:</b> Given that the intensity is below gas exchange threshold, all model predictions implemented from the current study matched the exercise prescription.</p>","PeriodicalId":94191,"journal":{"name":"Research quarterly for exercise and sport","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Methods to Identify the Mean Response Time of Ramp-Incremental Exercise for Exercise Prescription.\",\"authors\":\"Nikan Behboodpour, Brayden Halvorson, Juan M Murias, Daniel Keir, Glen Belfry\",\"doi\":\"10.1080/02701367.2024.2346137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> The oxygen uptake (<math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub>) vs power output relationship from ramp incremental exercise is used to prescribe aerobic exercise. As power output increases, there is a delay in <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> that contributes to a misalignment of <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> from power output; the mean response time (MRT). If the MRT is not considered in exercise prescription, ramp incremental-identified power outputs will elicit <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> values that are higher than intended. We compared three methods of determining MRT (exponential modeling (MRT<sub>EXP</sub>), linear modeling (MRT<sub>LIN</sub>), and the steady-state method (MRT<sub>SS</sub>)) and evaluated their accuracy at predicting the <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> associated with power outputs approximating 75% and 85% of gas exchange threshold and 15% of the difference between gas exchange threshold and maximal <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> (Δ15). <b>Methods:</b> Ten males performed a 30-W∙min<sup>-1</sup> ramp incremental and three 30-min constant power output cycle ergometer trials with intensities at 75% gas exchange threshold, 85% gas exchange threshold, and ∆15. At each intensity, the measured steady-state <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> during each 30-min test was compared to the <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> predicted after adjustment by each of the three MRTs. <b>Results:</b> For all three MRT methods, predicted <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> was not different (<i>p</i> = 1.000) from the measured <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> at 75%GET (MRT<sub>EXP</sub>, 31 mL, MRT<sub>LIN</sub>, -35 mL, MRT<sub>SS</sub> 11 mL), 85%gas exchange threshold (MRT<sub>EXP</sub> -14 mL, MRT<sub>LIN</sub> -80 mL, MRT<sub>SS</sub> -32 mL). At Δ15, predicted <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> based on MRT<sub>EXP</sub> was not different (<i>p</i> = .767) from the measured <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub>, but was different for MRT<sub>LIN</sub> (<i>p</i> < .001) and MRT<sub>SS</sub> (<i>p</i> = .03). <b>Conclusion:</b> Given that the intensity is below gas exchange threshold, all model predictions implemented from the current study matched the exercise prescription.</p>\",\"PeriodicalId\":94191,\"journal\":{\"name\":\"Research quarterly for exercise and sport\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research quarterly for exercise and sport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02701367.2024.2346137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research quarterly for exercise and sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02701367.2024.2346137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

导言:斜坡递增运动的摄氧量(V˙O2)与输出功率的关系被用于有氧运动的处方。随着功率输出的增加,V˙O2 会出现延迟,导致 V˙O2与功率输出不一致,即平均反应时间(MRT)。如果在运动处方中不考虑 MRT,斜坡增量确定的功率输出将导致 V˙O2值高于预期值。我们比较了三种确定 MRT 的方法(指数建模法 (MRTEXP)、线性建模法 (MRTLIN) 和稳态法 (MRTSS)),并评估了它们在预测与接近气体交换阈值的 75% 和 85% 以及气体交换阈值与最大 V˙O2(Δ15)之差的 15% 的功率输出相关的 V˙O2时的准确性。方法:10 名男性进行了 30 W∙min-1 的斜坡递增试验和 3 次 30 分钟恒定功率输出循环测力计试验,强度分别为气体交换阈值的 75%、气体交换阈值的 85% 和 Δ15。在每种强度下,将每次 30 分钟测试期间测得的稳态 V˙O2与三种 MRT 调整后预测的 V˙O2进行比较。结果:对于所有三种 MRT 方法,在 75%GET (MRTEXP,31 mL,MRTLIN,-35 mL,MRTSS 11 mL)、85% 气体交换阈值(MRTEXP -14 mL,MRTLIN -80 mL,MRTSS -32 mL)时,预测 V˙O2与测量 V˙O2无差异(p = 1.000)。在 Δ15 时,根据 MRTEXP 预测的 V˙O2与测量的 V˙O2无差异(p = .767),但 MRTLIN 的预测 V˙O2与测量的 V˙O2有差异(p SS (p = .03))。结论:鉴于运动强度低于气体交换阈值,当前研究中的所有模型预测都与运动处方相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparison of Methods to Identify the Mean Response Time of Ramp-Incremental Exercise for Exercise Prescription.

Introduction: The oxygen uptake (V˙O2) vs power output relationship from ramp incremental exercise is used to prescribe aerobic exercise. As power output increases, there is a delay in V˙O2 that contributes to a misalignment of V˙O2 from power output; the mean response time (MRT). If the MRT is not considered in exercise prescription, ramp incremental-identified power outputs will elicit V˙O2 values that are higher than intended. We compared three methods of determining MRT (exponential modeling (MRTEXP), linear modeling (MRTLIN), and the steady-state method (MRTSS)) and evaluated their accuracy at predicting the V˙O2 associated with power outputs approximating 75% and 85% of gas exchange threshold and 15% of the difference between gas exchange threshold and maximal V˙O2 (Δ15). Methods: Ten males performed a 30-W∙min-1 ramp incremental and three 30-min constant power output cycle ergometer trials with intensities at 75% gas exchange threshold, 85% gas exchange threshold, and ∆15. At each intensity, the measured steady-state V˙O2 during each 30-min test was compared to the V˙O2 predicted after adjustment by each of the three MRTs. Results: For all three MRT methods, predicted V˙O2 was not different (p = 1.000) from the measured V˙O2 at 75%GET (MRTEXP, 31 mL, MRTLIN, -35 mL, MRTSS 11 mL), 85%gas exchange threshold (MRTEXP -14 mL, MRTLIN -80 mL, MRTSS -32 mL). At Δ15, predicted V˙O2 based on MRTEXP was not different (p = .767) from the measured V˙O2, but was different for MRTLIN (p < .001) and MRTSS (p = .03). Conclusion: Given that the intensity is below gas exchange threshold, all model predictions implemented from the current study matched the exercise prescription.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Influence of Mental Fatigue on Physical Performance and Its Relationship with Rating Perceived Effort and Enjoyment in Older Adults. Greater Excess Post-Exercise Oxygen Consumption and Fat Use Following Calisthenics vs. Oxygen Consumption Matched Steady-State Exercise. Muscle Hypertrophy and Strength Adaptations to Systematically Varying Resistance Exercises. The Effect of Attention Focus Instructions on Strength and Balance in Subjects With Generalized Joint Hypermobility. Neural and Muscular Determinants of Performance Fatigability Are Independent of Work and Recovery Durations During High-Intensity Interval Exercise in Males.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1