使用协方差矩阵和均值向量收缩估计器的高维判别规则

Pub Date : 2024-06-08 DOI:10.1016/j.jspi.2024.106199
Jaehoan Kim , Junyong Park , Hoyoung Park
{"title":"使用协方差矩阵和均值向量收缩估计器的高维判别规则","authors":"Jaehoan Kim ,&nbsp;Junyong Park ,&nbsp;Hoyoung Park","doi":"10.1016/j.jspi.2024.106199","DOIUrl":null,"url":null,"abstract":"<div><p>Linear discriminant analysis (LDA) is a typical method for classification problems with large dimensions and small samples. There are various types of LDA methods that are based on the different types of estimators for the covariance matrices and mean vectors. In this paper, we consider shrinkage methods based on a non-parametric approach. For the precision matrix, methods based on the sparsity structure or data splitting are examined. Regarding the estimation of mean vectors, Non-parametric Empirical Bayes (NPEB) methods and Non-parametric Maximum Likelihood Estimation (NPMLE) methods, also known as <span><math><mi>f</mi></math></span>-modeling and <span><math><mi>g</mi></math></span>-modeling, respectively, are adopted. The performance of linear discriminant rules based on combined estimation strategies of the covariance matrix and mean vectors are analyzed in this study. Particularly, the study presents a theoretical result on the performance of the NPEB method and compares it with previous studies. Simulation studies with various covariance matrices and mean vector structures are conducted to evaluate the methods discussed in this paper. Furthermore, real data examples such as gene expressions and EEG data are also presented.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High dimensional discriminant rules with shrinkage estimators of the covariance matrix and mean vector\",\"authors\":\"Jaehoan Kim ,&nbsp;Junyong Park ,&nbsp;Hoyoung Park\",\"doi\":\"10.1016/j.jspi.2024.106199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Linear discriminant analysis (LDA) is a typical method for classification problems with large dimensions and small samples. There are various types of LDA methods that are based on the different types of estimators for the covariance matrices and mean vectors. In this paper, we consider shrinkage methods based on a non-parametric approach. For the precision matrix, methods based on the sparsity structure or data splitting are examined. Regarding the estimation of mean vectors, Non-parametric Empirical Bayes (NPEB) methods and Non-parametric Maximum Likelihood Estimation (NPMLE) methods, also known as <span><math><mi>f</mi></math></span>-modeling and <span><math><mi>g</mi></math></span>-modeling, respectively, are adopted. The performance of linear discriminant rules based on combined estimation strategies of the covariance matrix and mean vectors are analyzed in this study. Particularly, the study presents a theoretical result on the performance of the NPEB method and compares it with previous studies. Simulation studies with various covariance matrices and mean vector structures are conducted to evaluate the methods discussed in this paper. Furthermore, real data examples such as gene expressions and EEG data are also presented.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线性判别分析(LDA)是处理大维度、小样本分类问题的一种典型方法。基于协方差矩阵和均值向量的不同类型的估计值,有各种类型的线性判别分析方法。本文考虑基于非参数方法的收缩方法。对于精度矩阵,我们研究了基于稀疏性结构或数据分割的方法。关于均值向量的估计,采用了非参数经验贝叶斯(NPEB)方法和非参数最大似然估计(NPMLE)方法,也分别称为 f 建模和 g 建模。本研究分析了基于协方差矩阵和均值向量组合估计策略的线性判别规则的性能。特别是,本研究提出了 NPEB 方法性能的理论结果,并与之前的研究进行了比较。为了评估本文所讨论的方法,我们使用各种协方差矩阵和均值向量结构进行了仿真研究。此外,还介绍了基因表达和脑电图数据等真实数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
High dimensional discriminant rules with shrinkage estimators of the covariance matrix and mean vector

Linear discriminant analysis (LDA) is a typical method for classification problems with large dimensions and small samples. There are various types of LDA methods that are based on the different types of estimators for the covariance matrices and mean vectors. In this paper, we consider shrinkage methods based on a non-parametric approach. For the precision matrix, methods based on the sparsity structure or data splitting are examined. Regarding the estimation of mean vectors, Non-parametric Empirical Bayes (NPEB) methods and Non-parametric Maximum Likelihood Estimation (NPMLE) methods, also known as f-modeling and g-modeling, respectively, are adopted. The performance of linear discriminant rules based on combined estimation strategies of the covariance matrix and mean vectors are analyzed in this study. Particularly, the study presents a theoretical result on the performance of the NPEB method and compares it with previous studies. Simulation studies with various covariance matrices and mean vector structures are conducted to evaluate the methods discussed in this paper. Furthermore, real data examples such as gene expressions and EEG data are also presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1