Zhengwei Chi, Xiaoxia Chen, Hanzhong Xia, Chengshuo Liu, Zhen Wang
{"title":"基于时空图卷积和分解基线-波动预测的铁矿石烧结过程风箱温度自适应控制系统","authors":"Zhengwei Chi, Xiaoxia Chen, Hanzhong Xia, Chengshuo Liu, Zhen Wang","doi":"10.1016/j.jprocont.2024.103254","DOIUrl":null,"url":null,"abstract":"<div><p>The temperature within the sintering furnace is a decisive factor influencing the quality of the sintered ore in the iron ore sintering process. In practical operations, the temperature at the bellows directly linked to the bed layer indirectly signifies the internal furnace temperature. Maintaining a stable temperature at the bellows, particularly at the burn-through point, is vital for minimizing gas emissions, improving carbon efficiency, and enhancing the quality of the sintered ore. This paper proposes an intelligent temperature control system based on Spatial–Temporal Graph Convolutional and Disentangled Baseline-Volatility (STGCDBV) prediction. The STGCDBV network comprises three parallel modules: Adaptive Graph Convolution Network (AGCN), Baseline and Volatility Disentangler (BVD), and a residual link, along with a Temporal–Nodal Encoder–Decoder (TNED) module. The AGCN constructs a graph reflecting the characteristics of bellows temperature, effectively merging static spatial data with dynamic thermal information. The BVD module captures the nonlinear trend data inherent in the sintering process. In contrast, the TNED synergizes the insights from the parallel modules using cross encoding and decoding functionalities. For controlling the sintering gas flow rate, a Model Reference Adaptive Control (MRAC) system is implemented, which utilizes a control scheme founded on a temperature reference model and iterative parameter adjustments. Extensive experiments using actual time-series data from a steel plant have been conducted. Moreover, comparisons between the performance of pre- and post-control interventions demonstrate that the STGCDBV-MRAC system can stabilize temperature fluctuations and exhibit exemplary control proficiency.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"140 ","pages":"Article 103254"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive control system based on spatial–temporal graph convolutional and disentangled baseline-volatility prediction of bellows temperature for iron ore sintering process\",\"authors\":\"Zhengwei Chi, Xiaoxia Chen, Hanzhong Xia, Chengshuo Liu, Zhen Wang\",\"doi\":\"10.1016/j.jprocont.2024.103254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The temperature within the sintering furnace is a decisive factor influencing the quality of the sintered ore in the iron ore sintering process. In practical operations, the temperature at the bellows directly linked to the bed layer indirectly signifies the internal furnace temperature. Maintaining a stable temperature at the bellows, particularly at the burn-through point, is vital for minimizing gas emissions, improving carbon efficiency, and enhancing the quality of the sintered ore. This paper proposes an intelligent temperature control system based on Spatial–Temporal Graph Convolutional and Disentangled Baseline-Volatility (STGCDBV) prediction. The STGCDBV network comprises three parallel modules: Adaptive Graph Convolution Network (AGCN), Baseline and Volatility Disentangler (BVD), and a residual link, along with a Temporal–Nodal Encoder–Decoder (TNED) module. The AGCN constructs a graph reflecting the characteristics of bellows temperature, effectively merging static spatial data with dynamic thermal information. The BVD module captures the nonlinear trend data inherent in the sintering process. In contrast, the TNED synergizes the insights from the parallel modules using cross encoding and decoding functionalities. For controlling the sintering gas flow rate, a Model Reference Adaptive Control (MRAC) system is implemented, which utilizes a control scheme founded on a temperature reference model and iterative parameter adjustments. Extensive experiments using actual time-series data from a steel plant have been conducted. Moreover, comparisons between the performance of pre- and post-control interventions demonstrate that the STGCDBV-MRAC system can stabilize temperature fluctuations and exhibit exemplary control proficiency.</p></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"140 \",\"pages\":\"Article 103254\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152424000945\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424000945","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An adaptive control system based on spatial–temporal graph convolutional and disentangled baseline-volatility prediction of bellows temperature for iron ore sintering process
The temperature within the sintering furnace is a decisive factor influencing the quality of the sintered ore in the iron ore sintering process. In practical operations, the temperature at the bellows directly linked to the bed layer indirectly signifies the internal furnace temperature. Maintaining a stable temperature at the bellows, particularly at the burn-through point, is vital for minimizing gas emissions, improving carbon efficiency, and enhancing the quality of the sintered ore. This paper proposes an intelligent temperature control system based on Spatial–Temporal Graph Convolutional and Disentangled Baseline-Volatility (STGCDBV) prediction. The STGCDBV network comprises three parallel modules: Adaptive Graph Convolution Network (AGCN), Baseline and Volatility Disentangler (BVD), and a residual link, along with a Temporal–Nodal Encoder–Decoder (TNED) module. The AGCN constructs a graph reflecting the characteristics of bellows temperature, effectively merging static spatial data with dynamic thermal information. The BVD module captures the nonlinear trend data inherent in the sintering process. In contrast, the TNED synergizes the insights from the parallel modules using cross encoding and decoding functionalities. For controlling the sintering gas flow rate, a Model Reference Adaptive Control (MRAC) system is implemented, which utilizes a control scheme founded on a temperature reference model and iterative parameter adjustments. Extensive experiments using actual time-series data from a steel plant have been conducted. Moreover, comparisons between the performance of pre- and post-control interventions demonstrate that the STGCDBV-MRAC system can stabilize temperature fluctuations and exhibit exemplary control proficiency.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.