Z. Y. Hu, Q. H. Dai, Y. J. Yan, Y. Zhang, H. Y. Li, H. Zhou, Y. W. Yao
{"title":"利用 GLASS 数据集剖析全球用水效率的特征和驱动因素","authors":"Z. Y. Hu, Q. H. Dai, Y. J. Yan, Y. Zhang, H. Y. Li, H. Zhou, Y. W. Yao","doi":"10.1029/2024EF004630","DOIUrl":null,"url":null,"abstract":"<p>Ecosystem water use efficiency (WUE) is a crucial parameter for understanding the interaction between carbon and water cycles. However, the spatio–temporal evolution and drivers of WUE remain unclear. This study utilized global annual scale global land surface satellite gross primary productivity and evapotranspiration data from 1982 to 2018 to estimate WUE and analyze its spatio–temporal characteristics. Additionally, the study investigated the response of WUE changes to five environmental factors (precipitation [PRE], soil moisture, temperature [TEM], palmer drought severity index, and vapor pressure deficit [VPD]) on WUE changes using partial correlation and structural equation modeling. The results suggested that the global annual WUE increased markedly over the study period, at an average rate of 0.0016 gC m<sup>−2</sup> mm<sup>−1</sup> H<sub>2</sub>O year<sup>−1</sup>. In contrast to the existing knowledge on the drivers of WUE change, climate change was found to have a larger contribution to WUE changes at the global and regional scales, especially in terms of TEM and VPD. A positive correlation between TEM and WUE was observed, but extreme TEM could lead to a decrease in WUE. VPD had the most significant direct effect on WUE, and its negative effect offset the positive influence of TEM especially in hyper-arid, semi-arid, and arid regions. These findings offer new insights into the impact of VPD and global warming on WUE.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004630","citationCount":"0","resultStr":"{\"title\":\"Dissecting the Characteristics and Driver Factors on Global Water Use Efficiency Using GLASS Data Sets\",\"authors\":\"Z. Y. Hu, Q. H. Dai, Y. J. Yan, Y. Zhang, H. Y. Li, H. Zhou, Y. W. Yao\",\"doi\":\"10.1029/2024EF004630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecosystem water use efficiency (WUE) is a crucial parameter for understanding the interaction between carbon and water cycles. However, the spatio–temporal evolution and drivers of WUE remain unclear. This study utilized global annual scale global land surface satellite gross primary productivity and evapotranspiration data from 1982 to 2018 to estimate WUE and analyze its spatio–temporal characteristics. Additionally, the study investigated the response of WUE changes to five environmental factors (precipitation [PRE], soil moisture, temperature [TEM], palmer drought severity index, and vapor pressure deficit [VPD]) on WUE changes using partial correlation and structural equation modeling. The results suggested that the global annual WUE increased markedly over the study period, at an average rate of 0.0016 gC m<sup>−2</sup> mm<sup>−1</sup> H<sub>2</sub>O year<sup>−1</sup>. In contrast to the existing knowledge on the drivers of WUE change, climate change was found to have a larger contribution to WUE changes at the global and regional scales, especially in terms of TEM and VPD. A positive correlation between TEM and WUE was observed, but extreme TEM could lead to a decrease in WUE. VPD had the most significant direct effect on WUE, and its negative effect offset the positive influence of TEM especially in hyper-arid, semi-arid, and arid regions. These findings offer new insights into the impact of VPD and global warming on WUE.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004630\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004630\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004630","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dissecting the Characteristics and Driver Factors on Global Water Use Efficiency Using GLASS Data Sets
Ecosystem water use efficiency (WUE) is a crucial parameter for understanding the interaction between carbon and water cycles. However, the spatio–temporal evolution and drivers of WUE remain unclear. This study utilized global annual scale global land surface satellite gross primary productivity and evapotranspiration data from 1982 to 2018 to estimate WUE and analyze its spatio–temporal characteristics. Additionally, the study investigated the response of WUE changes to five environmental factors (precipitation [PRE], soil moisture, temperature [TEM], palmer drought severity index, and vapor pressure deficit [VPD]) on WUE changes using partial correlation and structural equation modeling. The results suggested that the global annual WUE increased markedly over the study period, at an average rate of 0.0016 gC m−2 mm−1 H2O year−1. In contrast to the existing knowledge on the drivers of WUE change, climate change was found to have a larger contribution to WUE changes at the global and regional scales, especially in terms of TEM and VPD. A positive correlation between TEM and WUE was observed, but extreme TEM could lead to a decrease in WUE. VPD had the most significant direct effect on WUE, and its negative effect offset the positive influence of TEM especially in hyper-arid, semi-arid, and arid regions. These findings offer new insights into the impact of VPD and global warming on WUE.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.