用于高性能过氧化物太阳能微型模块的伪卤化物超分子设计原理

IF 2.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR European Journal of Inorganic Chemistry Pub Date : 2024-08-21 DOI:10.1016/j.joule.2024.05.019
{"title":"用于高性能过氧化物太阳能微型模块的伪卤化物超分子设计原理","authors":"","doi":"10.1016/j.joule.2024.05.019","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this work, we reveal the role of non-covalent interactions, which are known to play important roles in supramolecular phenomena, in achieving efficient perovskite<span><span> surface and grain boundary passivation. By using a series of pseudohalides, we find that </span>trifluoroacetate (TFA</span></span><sup>−</sup><span>) provides the strongest binding to iodide vacancies by means of non-covalent hydrogen bonding and dispersion interactions. By exploiting additional non-covalent dispersion and hydrophobic interactions in aromatic 3,3-diphenylpropylammonium (DPA</span><sup>+</sup>), we present a dual-ion passivation strategy that not only minimizes the non-radiative recombination center and local chemical inhomogeneities but also induces preferentially oriented growth of α-FAPbI<sub>3</sub><span> lattice. This leads to an outstanding power conversion efficiency (PCE) of 25.63% with an exceptional open-circuit voltage of 1.191 V in a perovskite solar cell with a small area, while perovskite solar mini modules with aperture areas of 25 and 64 cm</span><sup>2</sup> achieved PCE of 22.47% (quasi-steady-state [QSS]-certified 20.50%) and 20.88%, respectively, with outstanding stability under high-humidity conditions.</p></div>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular design principles in pseudohalides for high-performance perovskite solar mini modules\",\"authors\":\"\",\"doi\":\"10.1016/j.joule.2024.05.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this work, we reveal the role of non-covalent interactions, which are known to play important roles in supramolecular phenomena, in achieving efficient perovskite<span><span> surface and grain boundary passivation. By using a series of pseudohalides, we find that </span>trifluoroacetate (TFA</span></span><sup>−</sup><span>) provides the strongest binding to iodide vacancies by means of non-covalent hydrogen bonding and dispersion interactions. By exploiting additional non-covalent dispersion and hydrophobic interactions in aromatic 3,3-diphenylpropylammonium (DPA</span><sup>+</sup>), we present a dual-ion passivation strategy that not only minimizes the non-radiative recombination center and local chemical inhomogeneities but also induces preferentially oriented growth of α-FAPbI<sub>3</sub><span> lattice. This leads to an outstanding power conversion efficiency (PCE) of 25.63% with an exceptional open-circuit voltage of 1.191 V in a perovskite solar cell with a small area, while perovskite solar mini modules with aperture areas of 25 and 64 cm</span><sup>2</sup> achieved PCE of 22.47% (quasi-steady-state [QSS]-certified 20.50%) and 20.88%, respectively, with outstanding stability under high-humidity conditions.</p></div>\",\"PeriodicalId\":38,\"journal\":{\"name\":\"European Journal of Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124002472\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002472","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们揭示了在超分子现象中发挥重要作用的非共价相互作用在实现高效的包晶表面和晶界钝化中的作用。通过使用一系列伪卤化物,我们发现三氟乙酸盐(TFA-)通过非共价氢键和弥散相互作用为碘化物空位提供了最强的结合力。通过利用芳香族 3,3-二苯基丙基铵(DPA+)中额外的非共价分散和疏水相互作用,我们提出了一种双离子钝化策略,不仅能最大限度地减少非辐射重组中心和局部化学不均匀性,还能诱导 α-FAPbI3 晶格优先定向生长。这使得小面积的透辉石太阳能电池的功率转换效率(PCE)达到 25.63%,开路电压达到 1.191 V,而孔径面积分别为 25 和 64 cm2 的透辉石太阳能微型模块的 PCE 分别达到 22.47%(准稳态 [QSS] 认证为 20.50%)和 20.88%,并且在高湿度条件下具有出色的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supramolecular design principles in pseudohalides for high-performance perovskite solar mini modules

In this work, we reveal the role of non-covalent interactions, which are known to play important roles in supramolecular phenomena, in achieving efficient perovskite surface and grain boundary passivation. By using a series of pseudohalides, we find that trifluoroacetate (TFA) provides the strongest binding to iodide vacancies by means of non-covalent hydrogen bonding and dispersion interactions. By exploiting additional non-covalent dispersion and hydrophobic interactions in aromatic 3,3-diphenylpropylammonium (DPA+), we present a dual-ion passivation strategy that not only minimizes the non-radiative recombination center and local chemical inhomogeneities but also induces preferentially oriented growth of α-FAPbI3 lattice. This leads to an outstanding power conversion efficiency (PCE) of 25.63% with an exceptional open-circuit voltage of 1.191 V in a perovskite solar cell with a small area, while perovskite solar mini modules with aperture areas of 25 and 64 cm2 achieved PCE of 22.47% (quasi-steady-state [QSS]-certified 20.50%) and 20.88%, respectively, with outstanding stability under high-humidity conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Inorganic Chemistry
European Journal of Inorganic Chemistry 化学-无机化学与核化学
CiteScore
4.30
自引率
4.30%
发文量
419
审稿时长
1.3 months
期刊介绍: The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry: Chemische Berichte Bulletin des Sociétés Chimiques Belges Bulletin de la Société Chimique de France Gazzetta Chimica Italiana Recueil des Travaux Chimiques des Pays-Bas Anales de Química Chimika Chronika Revista Portuguesa de Química ACH—Models in Chemistry Polish Journal of Chemistry The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.
期刊最新文献
Thoracentesis: an old story and some new sources Clinical remission attainment, definitions, and correlates among patients with severe asthma treated with biologics: a systematic review and meta-analysis Asthma remission: a call for a globally standardised definition Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene Cracking the triple helix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1