{"title":"用于高性能过氧化物太阳能微型模块的伪卤化物超分子设计原理","authors":"","doi":"10.1016/j.joule.2024.05.019","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this work, we reveal the role of non-covalent interactions, which are known to play important roles in supramolecular phenomena, in achieving efficient perovskite<span><span> surface and grain boundary passivation. By using a series of pseudohalides, we find that </span>trifluoroacetate (TFA</span></span><sup>−</sup><span>) provides the strongest binding to iodide vacancies by means of non-covalent hydrogen bonding and dispersion interactions. By exploiting additional non-covalent dispersion and hydrophobic interactions in aromatic 3,3-diphenylpropylammonium (DPA</span><sup>+</sup>), we present a dual-ion passivation strategy that not only minimizes the non-radiative recombination center and local chemical inhomogeneities but also induces preferentially oriented growth of α-FAPbI<sub>3</sub><span> lattice. This leads to an outstanding power conversion efficiency (PCE) of 25.63% with an exceptional open-circuit voltage of 1.191 V in a perovskite solar cell with a small area, while perovskite solar mini modules with aperture areas of 25 and 64 cm</span><sup>2</sup> achieved PCE of 22.47% (quasi-steady-state [QSS]-certified 20.50%) and 20.88%, respectively, with outstanding stability under high-humidity conditions.</p></div>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular design principles in pseudohalides for high-performance perovskite solar mini modules\",\"authors\":\"\",\"doi\":\"10.1016/j.joule.2024.05.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this work, we reveal the role of non-covalent interactions, which are known to play important roles in supramolecular phenomena, in achieving efficient perovskite<span><span> surface and grain boundary passivation. By using a series of pseudohalides, we find that </span>trifluoroacetate (TFA</span></span><sup>−</sup><span>) provides the strongest binding to iodide vacancies by means of non-covalent hydrogen bonding and dispersion interactions. By exploiting additional non-covalent dispersion and hydrophobic interactions in aromatic 3,3-diphenylpropylammonium (DPA</span><sup>+</sup>), we present a dual-ion passivation strategy that not only minimizes the non-radiative recombination center and local chemical inhomogeneities but also induces preferentially oriented growth of α-FAPbI<sub>3</sub><span> lattice. This leads to an outstanding power conversion efficiency (PCE) of 25.63% with an exceptional open-circuit voltage of 1.191 V in a perovskite solar cell with a small area, while perovskite solar mini modules with aperture areas of 25 and 64 cm</span><sup>2</sup> achieved PCE of 22.47% (quasi-steady-state [QSS]-certified 20.50%) and 20.88%, respectively, with outstanding stability under high-humidity conditions.</p></div>\",\"PeriodicalId\":38,\"journal\":{\"name\":\"European Journal of Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124002472\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002472","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Supramolecular design principles in pseudohalides for high-performance perovskite solar mini modules
In this work, we reveal the role of non-covalent interactions, which are known to play important roles in supramolecular phenomena, in achieving efficient perovskite surface and grain boundary passivation. By using a series of pseudohalides, we find that trifluoroacetate (TFA−) provides the strongest binding to iodide vacancies by means of non-covalent hydrogen bonding and dispersion interactions. By exploiting additional non-covalent dispersion and hydrophobic interactions in aromatic 3,3-diphenylpropylammonium (DPA+), we present a dual-ion passivation strategy that not only minimizes the non-radiative recombination center and local chemical inhomogeneities but also induces preferentially oriented growth of α-FAPbI3 lattice. This leads to an outstanding power conversion efficiency (PCE) of 25.63% with an exceptional open-circuit voltage of 1.191 V in a perovskite solar cell with a small area, while perovskite solar mini modules with aperture areas of 25 and 64 cm2 achieved PCE of 22.47% (quasi-steady-state [QSS]-certified 20.50%) and 20.88%, respectively, with outstanding stability under high-humidity conditions.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.