用于组织工程应用的具有可调大孔率的聚 HIPE-结冷胶材料的合成与表征

IF 5.1 1区 化学 Q1 POLYMER SCIENCE Macromolecules Pub Date : 2024-06-17 DOI:10.1021/acs.macromol.4c00064
Sweeta Akbari*, Mart Kroon, Vijay Singh Parihar, Janne T. Koivisto, Markus Hannula, Minna Kellomäki and Jari Hyttinen, 
{"title":"用于组织工程应用的具有可调大孔率的聚 HIPE-结冷胶材料的合成与表征","authors":"Sweeta Akbari*,&nbsp;Mart Kroon,&nbsp;Vijay Singh Parihar,&nbsp;Janne T. Koivisto,&nbsp;Markus Hannula,&nbsp;Minna Kellomäki and Jari Hyttinen,&nbsp;","doi":"10.1021/acs.macromol.4c00064","DOIUrl":null,"url":null,"abstract":"<p >Polymerized high internal phase emulsions (polyHIPEs) were combined with gellan gum (GG) in an innovative approach. Four GG concentrations in polyHIPEs (P-GG 0%, P-GG 0.1%, P-GG 0.5%, and P-GG 1%) were explored for their impact on polyHIPE materials. The resulting macroporous polyHIPE-GG (P-GG) scaffolds exhibited up to 95% porosity and remarkable interconnectivity. Elevating GG concentration correlated with larger pore sizes, increased hydrophilicity, and degradability. Scanning electron microscopy (SEM) and X-ray microcomputed tomography provided insights into the structural influence of GG on polyHIPE materials. Pore sizes ranged from 32 to 1036 μm. In vitro Live/Dead assay confirmed the cytocompatibility of these scaffolds with human fibroblast cells, showcasing their potential for mimicking cartilage and bone tissue structures, promoting cell activities, nutrient exchange, supporting various cell lines, and facilitating vascularization.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.macromol.4c00064","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of PolyHIPE-Gellan Gum Material with Tunable Macroporosity for Tissue Engineering Applications\",\"authors\":\"Sweeta Akbari*,&nbsp;Mart Kroon,&nbsp;Vijay Singh Parihar,&nbsp;Janne T. Koivisto,&nbsp;Markus Hannula,&nbsp;Minna Kellomäki and Jari Hyttinen,&nbsp;\",\"doi\":\"10.1021/acs.macromol.4c00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymerized high internal phase emulsions (polyHIPEs) were combined with gellan gum (GG) in an innovative approach. Four GG concentrations in polyHIPEs (P-GG 0%, P-GG 0.1%, P-GG 0.5%, and P-GG 1%) were explored for their impact on polyHIPE materials. The resulting macroporous polyHIPE-GG (P-GG) scaffolds exhibited up to 95% porosity and remarkable interconnectivity. Elevating GG concentration correlated with larger pore sizes, increased hydrophilicity, and degradability. Scanning electron microscopy (SEM) and X-ray microcomputed tomography provided insights into the structural influence of GG on polyHIPE materials. Pore sizes ranged from 32 to 1036 μm. In vitro Live/Dead assay confirmed the cytocompatibility of these scaffolds with human fibroblast cells, showcasing their potential for mimicking cartilage and bone tissue structures, promoting cell activities, nutrient exchange, supporting various cell lines, and facilitating vascularization.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.macromol.4c00064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.4c00064\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.4c00064","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

采用创新方法将聚合高内相乳液(polyHIPEs)与结冷胶(GG)结合在一起。研究了聚 HIPE 中四种浓度的 GG(P-GG 0%、P-GG 0.1%、P-GG 0.5% 和 P-GG 1%)对聚 HIPE 材料的影响。由此产生的大孔聚 HIPE-GG (P-GG)支架显示出高达 95% 的孔隙率和显著的互连性。GG 浓度的提高与孔径增大、亲水性增强和降解性提高相关。扫描电子显微镜(SEM)和 X 射线微观计算机断层扫描深入了解了 GG 对聚 HIPE 材料结构的影响。孔径从 32 微米到 1036 微米不等。体外活/死试验证实了这些支架与人成纤维细胞的细胞相容性,展示了它们在模拟软骨和骨组织结构、促进细胞活动、营养交换、支持各种细胞系以及促进血管形成方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Characterization of PolyHIPE-Gellan Gum Material with Tunable Macroporosity for Tissue Engineering Applications

Polymerized high internal phase emulsions (polyHIPEs) were combined with gellan gum (GG) in an innovative approach. Four GG concentrations in polyHIPEs (P-GG 0%, P-GG 0.1%, P-GG 0.5%, and P-GG 1%) were explored for their impact on polyHIPE materials. The resulting macroporous polyHIPE-GG (P-GG) scaffolds exhibited up to 95% porosity and remarkable interconnectivity. Elevating GG concentration correlated with larger pore sizes, increased hydrophilicity, and degradability. Scanning electron microscopy (SEM) and X-ray microcomputed tomography provided insights into the structural influence of GG on polyHIPE materials. Pore sizes ranged from 32 to 1036 μm. In vitro Live/Dead assay confirmed the cytocompatibility of these scaffolds with human fibroblast cells, showcasing their potential for mimicking cartilage and bone tissue structures, promoting cell activities, nutrient exchange, supporting various cell lines, and facilitating vascularization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
期刊最新文献
Solvent-Free One-Pot Recycling of Polylactide to Usable Polymers and Their Closed-Loop Recyclability Correction to “Calcium–Lithium Systems as Innovative Bimetallic Initiators for the Anionic Polymerization of Butadiene: Toward Control and High 1,4-Trans Microstructure” Issue Editorial Masthead Issue Publication Information Role of Bottlebrush Additives on the Structure of Block Copolymers in the Bulk and Thin Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1