利用尖端曲率诱导的局部电场将二氧化碳高效电还原为乙醇

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-06-20 DOI:10.1039/D4NR01173B
Jing Zhou, Qianyue Liang, Pu Huang, Jing Xu, Tengfei Niu, Yao Wang, Yuming Dong and Jiawei Zhang
{"title":"利用尖端曲率诱导的局部电场将二氧化碳高效电还原为乙醇","authors":"Jing Zhou, Qianyue Liang, Pu Huang, Jing Xu, Tengfei Niu, Yao Wang, Yuming Dong and Jiawei Zhang","doi":"10.1039/D4NR01173B","DOIUrl":null,"url":null,"abstract":"<p >Electrocatalytic reduction of CO<small><sub>2</sub></small> into multicarbon (C<small><sub>2+</sub></small>) products offers a promising pathway for CO<small><sub>2</sub></small> utilization. However, achieving high selectivity towards multicarbon alcohols, such as ethanol, remains a challenge. In this work, we present a novel CuO nanoflower catalyst with engineered tip curvature, achieving remarkable selectivity and efficiency in the electroreduction of CO<small><sub>2</sub></small> to ethanol. This catalyst exhibits an ethanol faradaic efficiency (FE<small><sub>ethanol</sub></small>) of 47% and a formation rate of 320 μmol h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>, with an overall C<small><sub>2+</sub></small> product faradaic efficiency (FE<small><sub>C<small><sub>2+</sub></small></sub></small>) reaching ∼77.8%. We attribute this performance to the catalyst's sharp tip, which generates a strong local electric field, thereby accelerating CO<small><sub>2</sub></small> activation and facilitating C–C coupling for deep CO<small><sub>2</sub></small> reduction. <em>In situ</em> Raman spectroscopy reveals an increased *OH coverage under operating conditions, where the enhanced *OH adsorption facilitates the stabilization of *CHCOH intermediates through hydrogen bonding interaction, thus improving ethanol selectivity. Our findings demonstrate the pivotal role of local electric fields in altering reaction kinetics for CO<small><sub>2</sub></small> electroreduction, presenting a new avenue for catalyst design aiming at converting CO<small><sub>2</sub></small> to ethanol.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient CO2 electroreduction to ethanol enabled by tip-curvature-induced local electric fields†\",\"authors\":\"Jing Zhou, Qianyue Liang, Pu Huang, Jing Xu, Tengfei Niu, Yao Wang, Yuming Dong and Jiawei Zhang\",\"doi\":\"10.1039/D4NR01173B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrocatalytic reduction of CO<small><sub>2</sub></small> into multicarbon (C<small><sub>2+</sub></small>) products offers a promising pathway for CO<small><sub>2</sub></small> utilization. However, achieving high selectivity towards multicarbon alcohols, such as ethanol, remains a challenge. In this work, we present a novel CuO nanoflower catalyst with engineered tip curvature, achieving remarkable selectivity and efficiency in the electroreduction of CO<small><sub>2</sub></small> to ethanol. This catalyst exhibits an ethanol faradaic efficiency (FE<small><sub>ethanol</sub></small>) of 47% and a formation rate of 320 μmol h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>, with an overall C<small><sub>2+</sub></small> product faradaic efficiency (FE<small><sub>C<small><sub>2+</sub></small></sub></small>) reaching ∼77.8%. We attribute this performance to the catalyst's sharp tip, which generates a strong local electric field, thereby accelerating CO<small><sub>2</sub></small> activation and facilitating C–C coupling for deep CO<small><sub>2</sub></small> reduction. <em>In situ</em> Raman spectroscopy reveals an increased *OH coverage under operating conditions, where the enhanced *OH adsorption facilitates the stabilization of *CHCOH intermediates through hydrogen bonding interaction, thus improving ethanol selectivity. Our findings demonstrate the pivotal role of local electric fields in altering reaction kinetics for CO<small><sub>2</sub></small> electroreduction, presenting a new avenue for catalyst design aiming at converting CO<small><sub>2</sub></small> to ethanol.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01173b\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01173b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过电催化将二氧化碳还原成多碳(C2+)产品为二氧化碳的利用提供了一条前景广阔的途径。然而,实现对乙醇等多碳醇的高选择性仍然是一项挑战。在这项工作中,我们提出了一种新型 CuO 纳米花催化剂,其尖端曲率经过工程化设计,在将 CO2 电还原为乙醇的过程中实现了显著的选择性和效率。这种催化剂的乙醇法拉第效率(FEethanol)为 47%,形成率为 325 μmol h-1 cm-2,C2+ 产物的总体法拉第效率(FEC2+)达到约 78%。我们将这一性能归功于催化剂的尖锐尖端,它能产生强大的局部电场,从而加速二氧化碳的活化,促进 C-C 耦合以实现二氧化碳的深度还原。原位拉曼光谱显示,在操作条件下,*OH 的覆盖率增加,*OH 吸附的增强通过氢键作用促进了*CHCOH 中间体的稳定,从而提高了乙醇的选择性。我们的研究结果证明了局部电场在改变二氧化碳电还原反应动力学中的关键作用,为旨在将二氧化碳转化为乙醇的催化剂设计提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient CO2 electroreduction to ethanol enabled by tip-curvature-induced local electric fields†

Electrocatalytic reduction of CO2 into multicarbon (C2+) products offers a promising pathway for CO2 utilization. However, achieving high selectivity towards multicarbon alcohols, such as ethanol, remains a challenge. In this work, we present a novel CuO nanoflower catalyst with engineered tip curvature, achieving remarkable selectivity and efficiency in the electroreduction of CO2 to ethanol. This catalyst exhibits an ethanol faradaic efficiency (FEethanol) of 47% and a formation rate of 320 μmol h−1 cm−2, with an overall C2+ product faradaic efficiency (FEC2+) reaching ∼77.8%. We attribute this performance to the catalyst's sharp tip, which generates a strong local electric field, thereby accelerating CO2 activation and facilitating C–C coupling for deep CO2 reduction. In situ Raman spectroscopy reveals an increased *OH coverage under operating conditions, where the enhanced *OH adsorption facilitates the stabilization of *CHCOH intermediates through hydrogen bonding interaction, thus improving ethanol selectivity. Our findings demonstrate the pivotal role of local electric fields in altering reaction kinetics for CO2 electroreduction, presenting a new avenue for catalyst design aiming at converting CO2 to ethanol.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
CD56-targeted in vivo genetic engineering of natural killer cells mediates immunotherapy for acute myeloid leukemia. High Sensing Performance Hybrid Nanostructure Constructed via Nanoscale Confined Motion of Nanofiber and Nanoplatelet in Flexible Nanocomposite Sensor Nanoscopic visualization of microgel-immobilized cytochrome P450 enzymes and their local activity Metamagnetic transition and meta-stable magnetic state in Co-dopedFe3GaTe2 Perspectives on sustainable and efficient routes of nanoparticle synthesis: an exhaustive review on conventional and microplasma-assisted techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1