{"title":"腹部 CT 下的椎体压缩性骨折:诊断不足、治疗不足和人工智能算法评估。","authors":"Peder Wiklund, David Buchebner, Mats Geijer","doi":"10.1093/jbmr/zjae096","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebral compression fractures (VCFs) are common and indicate a high future risk of additional osteoporotic fractures. However, many VCFs are unreported by radiologists, and even if reported, many patients do not receive treatment. The purpose of the study was to evaluate a new artificial intelligence (AI) algorithm for the detection of VCFs and to assess the prevalence of reported and unreported VCFs. This retrospective cohort study included patients over age 60 yr with an abdominal CT between January 18, 2019 and January 18, 2020. Images and radiology reports were reviewed to identify reported and unreported VCFs, and the images were processed by an AI algorithm. For reported VCFs, the electronic health records were reviewed regarding subsequent osteoporosis screening and treatment. Totally, 1112 patients were included. Of these, 187 patients (16.8%) had a VCF, of which 62 had an incident VCF and 49 had a previously unknown prevalent VCF. The radiologist reporting rate of these VCFs was 30% (33/111). For moderate and severe (grade 2-3) VCF, the AI algorithm had 85.2% sensitivity, 92.3% specificity, 57.8% positive predictive value, and 98.1% negative predictive value. Three of 30 patients with reported VCFs started osteoporosis treatment within a year. The AI algorithm had high accuracy for the detection of VCFs and could be very useful in increasing the detection rate of VCFs, as there was a substantial underdiagnosis of VCFs. However, as undertreatment in reported cases was substantial, to fully realize the potential of AI, changes to the management pathway outside of the radiology department are imperative.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1113-1119"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertebral compression fractures at abdominal CT: underdiagnosis, undertreatment, and evaluation of an AI algorithm.\",\"authors\":\"Peder Wiklund, David Buchebner, Mats Geijer\",\"doi\":\"10.1093/jbmr/zjae096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vertebral compression fractures (VCFs) are common and indicate a high future risk of additional osteoporotic fractures. However, many VCFs are unreported by radiologists, and even if reported, many patients do not receive treatment. The purpose of the study was to evaluate a new artificial intelligence (AI) algorithm for the detection of VCFs and to assess the prevalence of reported and unreported VCFs. This retrospective cohort study included patients over age 60 yr with an abdominal CT between January 18, 2019 and January 18, 2020. Images and radiology reports were reviewed to identify reported and unreported VCFs, and the images were processed by an AI algorithm. For reported VCFs, the electronic health records were reviewed regarding subsequent osteoporosis screening and treatment. Totally, 1112 patients were included. Of these, 187 patients (16.8%) had a VCF, of which 62 had an incident VCF and 49 had a previously unknown prevalent VCF. The radiologist reporting rate of these VCFs was 30% (33/111). For moderate and severe (grade 2-3) VCF, the AI algorithm had 85.2% sensitivity, 92.3% specificity, 57.8% positive predictive value, and 98.1% negative predictive value. Three of 30 patients with reported VCFs started osteoporosis treatment within a year. The AI algorithm had high accuracy for the detection of VCFs and could be very useful in increasing the detection rate of VCFs, as there was a substantial underdiagnosis of VCFs. However, as undertreatment in reported cases was substantial, to fully realize the potential of AI, changes to the management pathway outside of the radiology department are imperative.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":\" \",\"pages\":\"1113-1119\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjae096\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae096","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Vertebral compression fractures at abdominal CT: underdiagnosis, undertreatment, and evaluation of an AI algorithm.
Vertebral compression fractures (VCFs) are common and indicate a high future risk of additional osteoporotic fractures. However, many VCFs are unreported by radiologists, and even if reported, many patients do not receive treatment. The purpose of the study was to evaluate a new artificial intelligence (AI) algorithm for the detection of VCFs and to assess the prevalence of reported and unreported VCFs. This retrospective cohort study included patients over age 60 yr with an abdominal CT between January 18, 2019 and January 18, 2020. Images and radiology reports were reviewed to identify reported and unreported VCFs, and the images were processed by an AI algorithm. For reported VCFs, the electronic health records were reviewed regarding subsequent osteoporosis screening and treatment. Totally, 1112 patients were included. Of these, 187 patients (16.8%) had a VCF, of which 62 had an incident VCF and 49 had a previously unknown prevalent VCF. The radiologist reporting rate of these VCFs was 30% (33/111). For moderate and severe (grade 2-3) VCF, the AI algorithm had 85.2% sensitivity, 92.3% specificity, 57.8% positive predictive value, and 98.1% negative predictive value. Three of 30 patients with reported VCFs started osteoporosis treatment within a year. The AI algorithm had high accuracy for the detection of VCFs and could be very useful in increasing the detection rate of VCFs, as there was a substantial underdiagnosis of VCFs. However, as undertreatment in reported cases was substantial, to fully realize the potential of AI, changes to the management pathway outside of the radiology department are imperative.
期刊介绍:
The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.